THE EFFECT OF EXOSOMES FROM BONE MARROW MESENCHYMAL STEM CELLS ON OSTEOARTHRITIS
H. Zhu, J. J. T. Fu, J. Yang, Z. Gu. Department of Rheumatology, Affiliated Hospital of Nantong University, Nantong, China

Background: Mesenchymal stem cells (MSCs) exert chondroprotective effects in clinical models of osteoarthritis (OA), but the exact mechanisms were still unclear. Exosomes that serve as carriers of genetic information have been implicated in many diseases and are known to participate in many physiological processes.

Objectives: Here, we investigate the therapeutic potential of exosomes from human bone marrow MSCs in alleviating OA and explore the mechanism.

Methods: Exosomes were harvested from conditioned culture media of BM-MSCs by a sequential centrifugation process. The anterior cruciate ligament transection and destabilisation of the medial meniscus (DMM) surgery were performed on the knee joints of SD female rat as an OA model. After four weeks, the animals were followed by intra-articular injection of either BM-MSCs or their exosomes every week for four weeks. Cartilage destruction, matrix degradation and subchondral bone changes were evaluated with histological staining and micro-CT at the post-surgery 8 weeks. Primary human chondrocytes treated with IL-1β were used as an in vitro model to evaluate the effects of exosomes for 24 hours.

Results: We found that intra-articular injection of BM-MSCs and BM-MSCs derived exosomes improve cartilage destruction and subchondral bone remodelling in ACLT+DMM model. BM-MSCs and exosomes equally protected rat from joint damage. These exosomes maintained the chondrocyte matrix by increasing collagen type II synthesis and decreasing ADAMTS5, MMP13 and Col II expression in the presence of IL-1β in vitro. In addition, BM-MSCs derived exosomes were also shown to protect chondrocytes from apoptosis and senescence.

Conclusions: The exosomes from BM-MSCs exert a beneficial therapeutic effect on OA by not only repairing the degenerative cartilage, but also improving subchondral bone remodelling, which in turn provides a new target for OA drug and drug-delivery system development.

REFERENCES:

Disclosure of Interest: None declared

ADALIMUAB:TNF COMPLEXES ARE CLEARED MORE EFFICIENTLY BY HUMAN OSTEOCLASTS THAN THOSE WITH ETANERCEPT THROUGH FCG-RECEPTOR BINDING AND INTERNALISATION
B.P. Harvey, J. Cohen-Solal, Z. Kaymakcalan. Biologics, Abbvie Biosearch Center, Worcester, USA

Background: TNF-alpha (TNFα) has been shown to contribute to osteoclastogenesis (OCogenesis) (OCogenesis) and in conjunction with M-CSF or RANKL, two key cytokines involved in osteoclast (OC) development. We have previously demonstrated that TNF enhances the kinetics of RANKL-induced human OCogenesis and that its effects are mitigated more effectively by the anti-TNF biologic adalimumab (ADA) as compared to etanercept (ETN).

Objectives: To determine whether Fc-gamma receptor (FcγR)-mediated internalisation of the biologic:TNF complexes is a contributing mechanism responsible for the difference in effectiveness between ADA and ETN in preventing TNF-enhanced OCogenesis.

Methods: TNF biologics [ADA and ETN] alone or in preformed complexes with TNFα at 50:1 molar ratio were tested for FcgR binding by flow cytometry using CHO stably transfected with human FCGRs (FcgR1, FcgRIIA, -RIIB, -RIIC, FcgRIIIA and -RIIB). FcgR expression and binding of preformed biologic:TNF complexes at 1:10 ratio ±FcgR blocking antibodies to primary human OC precursors (OCP) was evaluated by flow cytometry. FcgR-mediated internalisation was assessed by monitoring a reduction in OC survival in response to preformed biologic:TNF complexes (25:1 ratio) bound with saporin (ZAP), a ribosome-inactivating toxin, as anti-human Fc IgG Fab conjugate ±FcgR blocking antibodies.

Results: The binding study to CHO (human FcgRε) cell lines showed that monoclonal ADA and ETN bind similarly to FcgR (highly on high affinity FcgR and loosely on low affinity FcgRs) while preformed biologics:TNF complexes bind differently. ADA:TNF complexes bind to low affinity FcgR, whereas ETN:TNF keep a monomeric binding profile with no gain of binding to low affinity FcgR. OCP were found to express mostly FcgRII and III receptors. In development with predominant binding of only ADA:TNF, not ETN:TNF, to this FcgR with additional binding to undefined receptor(s). Despite subsequent increases in FcgRII and IIII later on, ADA:TNF still preferentially bound to FcgRII in the mature OCP with minimal binding to IIId, whereas ETN:TNF binding was observed only to FcgRII. Exposure of OCP to ADA:TNF:ZAP(toxin) complexes led to a significant reduction (4-fold) in mature OC due to complex internalisation as compared to human IgG:ZAP + TNF – complexes that was partially rescued only with the addition of FcgRII blocking antibody.

Interestingly, a 1.5-fold reduction in mature OC was observed with ETN:TNF:ZAP complexes (25:1 ratio) bound with saporin (ZAP), a ribosome-inactivating toxin, as anti-human Fc IgG Fab conjugate ±FcgR blocking antibodies. OCP were also shown to protect chondrocytes from apoptosis and senescence.

Conclusions: The exosomes from BM-MSCs exert a beneficial therapeutic effect on OA by not only repairing the degenerative cartilage, but also improving subchondral bone remodelling, which in turn provides a new target for OA drug and drug-delivery system development.

REFERENCES:

Disclosure of Interest: None declared

IMPAIRMENT IN HYDROGEN SULFIDE SYNTHESIS IN OSTEOARTHRITIC CHONDROCYTES FROM DIABETIC PATIENT AND UNDER A HIGH GLUCOSE STRESS

Background: A growing number of findings support the hypothesis that type 2 diabetes is an independent risk factor of osteoarthritis (OA). However, the mechanisms underlying the connection between both diseases remain unclear. Hydrogen sulfide (H2S) plays an important role in the pathogenesis of diabetes and its complications. In relation, we and other authors have observed a protective impact of H2S induction on activation of pathological pathways in the chondrocyte.

Objectives: In this study we examined the modulation of H2S levels in osteoarthritic chondrocytes from diabetic (DB) or non-diabetic (non-DB) patients subjected or under glucose stress, in order to elucidate whether impairment in H2S-mediated signalling could participate in the establishment of diabetes-related OA.

Methods: Chondrocytes were isolated from OA cartilage of diabetic (DB) or non diabetic (non-DB) patients. T/C28a2 and primary human chondrocytes were stimulated w/o IL-1β (6 ng/mL) under a normal (5.5 mM, NG) or a high (25 mM, HG) glucose environment. Gene and protein expression of enzymes involved in H2S synthesis (cystathionine γ-liaise [CSE], cysteinate β-synthase [CBS], and 3-mercaptoxyanfyl sulforansferase [3-MT]) and HO-1 were assessed by RT-qPCR and WB, respectively. To determine the involvement of H2S in catabolic pathways activated by HG in chondrocytes, NaSH and GYY 4137 (500 μM), a fast and slow-releasing H2S donor respectively, were employed.

Results: Fresh isolated chondrocytes from OA cartilage of diabetic patients showed lower levels of H2S synthesising enzymes (CSE, CBS and 3-MT) than those of non-DB patients (figure 1). In relation, chondrocytes T/C28a2 exposed to HG stress expressed lower mRNA and protein levels of these 3 enzymes after 3 days of incubation compared to those incubated in NG conditions (0.41-fold and 0.93-fold [CSE], 0.42-fold and 0.66-fold [CBS], and 0.52-fold and 0.79-fold [3-MT] for mRNA and protein expression, respectively; n=6, p<0.05). IL-1β also attenuated the gene and protein expression of CBS elicited by chondrocytes incubated in NG (0.47-fold and 0.86-fold, respectively; n=6, p<0.05). Additionally, the expression of pro-inflammatory chemokine IL-8 induced by IL-1β was significantly higher in chondrocytes under HG than NG condition (6-fold; n=6, p<0.05); whereas protein levels of heme oxygenase 1, an anti-inflammatory enzyme, were reduced in HG exposed chondrocytes (0.77-fold; n=6, p<0.05). GYY 4137 and NaSH co-treatment recovered HO-1 expression and reduced IL-8 levels in chondrocytes under IL-1β+HG conditions. Furthermore, similar results were registered in primary human chondrocytes from OA cartilage.

Disclosure of Interest: None declared