cells were observed to be increased in the peripheral blood of SSc pts compared to HSs, suggesting their possible role in the pathogenesis of the disease.

REFERENCES:

Disclosure of Interest: None declared

A NOVEL ANIMAL MODEL FOR SYSTEMIC SCLEROSIS INDUCED BY IMMUNISATION OF ANGIIOTENSIN II RECEPTOR 1

X. Yue1, F. Petersen1, X. Wang1, H. Heidecke2, G. Riemekasten3, X. Yu1.
1Research center borstel, Borstel; 2Celltrend GmbH, Luckenwalder; 3Department of Rheumatology, University hospital lübeck, lübeck, Germany

Background: Systemic sclerosis (SSc) is a complex connective tissue disease which is characterised by autoimmunity, vasculopathy and fibrosis. Our recent study showed that the progression of SSc was strongly associated with the autoantibodies against angiotensin II receptor 1 (AT1R), suggesting a role of autoimmunity to AT1R in the pathogenesis of the disease.

Objectives: In this study, we aimed to investigate the role of AT1R in the pathogenesis of SSc in mice.

Methods: C57BL/6J mice were immunised with membrane extract (ME) of CHO cells as control. Serum, lung infiltrates and fibrosis in the skin as well as pulmonary inflammation.

Histologically, mice immunised with hAT1R showed a SSc-like disease, including perivascular infiltrates and fibrosis in the skin as well as pulmonary inflammation. This inflammation in the skin and the lung were characterised by infiltration of T- and B-cells. Furthermore, transfer of immune cells from hAT1R-immunised mice into C57BL/6J mice induced inflammation in the lung.

Conclusions: This study demonstrates that immunisation with hAT1R can induce a SSc-like disease, thus showing a pathogenic role of autoimmunity to AT1R and providing a novel mouse model for the diseases. Furthermore, this study also introduces a new immunisation strategy to generate functional autoantibodies against receptors on the cell membrane.

REFERENCES:

Disclosure of Interest: None declared

INCREASED FREQUENCY OF CIRCULATING CD163+ NON-CLASSICAL MONOCYTES IN SCLERODERMA AND ENHANCED DUAL POLARISATION TOWARDS M1 AND M2-LIKE PHENOTYPES IN MONOCYTE-DERIVED MACROPHAGES

A. Tam1, L. Reinke-Breen2, G. Trujillo2, S. Xu1, C. P. Denton1, D. J. Abraham1, G. Jarai1, V. H. Ong1. 1Centre for Rheumatology and Connective Tissue Disease, UCL, London, United Kingdom, 2Discovery Biology, Fibrotic Diseases, Bristol-Myers Squibb, Pennington, United States

Background: Scleroderma (SSc) is an autoimmune connective tissue disease involving complex interactions between various cell types leading to organ-based tissue fibrosis. Emergence of the monocytes (Mo)/macrophages (Mφ) lineage(s) as key contributors to inflammation, vascular dysfunction and scarring in scleroderma have led to increased scrutiny of their phenotype and function.

Objectives: To determine the circulating Mo subpopulations and phenotypes of Mφ in SSc.

Methods: PBMC were collected from healthy (HC) and SSc donors, and analysed by flow cytometry using Mo phenotypic antibodies or purified and cultured in vitro. For flow cytometry immunophenotyping, Mo were gated on CD3-CD19-CD56-HLA-DR- positive populations, and subsets defined by CD14, CD16, CD163 and CD206 expression. For Mo cultures, Mφ were negatively selected from PBMCs, cultured for 7 days, and treated with IFN-γ(5ng/ml) or IL-4(20ng/ml) for 24hours. Cytokine levels in the conditioned media were evaluated by MSD analyses and normalised to total protein levels.

Results: The frequency of circulating CD163+ non-classical Mo (CD14+CD16+) was 2-fold higher in SSc patients than in HC (unpaired t-test, p=0.026). No difference was found in the frequency of CD206+ monocyte subsets between HC and SSc. In vitro, unstimulated SSc Mo (Mφ) secreted higher levels of classically-activated pro-inflammatory (M1) and alternatively-activated pro-regenerative (M2) cytokines.

Conclusions: Studies exploring Mo have revealed distinct populations with selective biological functions. Our observation of an increased number of CD163+ non-classical Mo in SSc suggests that this subpopulation may play a key role in inflammatory-driven fibrosis and act as an important source of pro-fibrotic cytokines. This data is consistent with previous reports of elevated levels of serum CD163 and increased CD163 secretion by SSc PBMCs. SSc Mo showed a pronounced and enhanced dual M1 and M2 polarisation basally compared to HC, indicating cells were ‘primed’ to undergo phenotypic polarisation. Our studies support the notion that Mφ cytokine secretion generates a pro-fibrotic milieu in scleroderma tissues, playing a prominent role in dysregulated tissue repair in fibrosis.

REFERENCES:

Disclosure of Interest: None declared

Dipeptidyl-peptidase-4 (DPP4) is a potential new molecular target for treatment of fibrosis

A. M. Soare, H. Gyoerfy, A. Matei, C. Dees, Y. Zhang, T. Wohlfahrt, C.-W. Chen, A. Ramming, G. Schett, J. Dieter. Department of Internal Medicine II – Rheumatology and Immunology, Friedrich-Alexander-University Erlangen-Nürnberg (FAU), Universitätsklinikum Erlangen, Erlangen, Germany

Background: Dipeptidyl-peptidase-4 (DPP4) plays a role in tissue scarring and its inhibition leads to reduced scar formation. Its function in tissue fibrosis, however, is unknown.

Objectives: The aim of the study was to investigate the expression of DPP4 in fibrotic tissue of systemic sclerosis (SSc) patients, to characterise DPP4 positive cells, to study the mechanism of action of DPP4 in fibroblasts and to evaluate the antifibrotic effect of pharmacological and genetically inhibition of DPP4 in different preclinical models of SSc.

Methods: Expression of DPP4 in human and murine skin was analysed. Mouse fibroblasts were isolated and DPP4 positive cells properties were assessed.