ANGIOGENIC T CELLS IN PRIMARY SJÖGREN’S SYNDROME: A DOUBLE-EDGED SWORD

A. Alunno1, M. Manetti2, O. Biston3, S. Cipriani4, L. Ibaña Mansnech5, R. Gerl6
1Department of Medicine, Rheumatology Unit, University of Perugia, Perugia; 2Department of Experimental and Clinical Medicine, Section of Anatomy and Histology, University of Florence, Florence, Italy

Background: Angiogenic T cells (Tang) have been recently identified within colonies of endothelial progenitor cells (EPCs) as mediators of endothelial repair. Both Tang and EPCs are reduced in rheumatoid arthritis and this contributes to persistent endothelial damage and eventually increased cardiovascular risk. In primary Sjögren’s syndrome (pSS), EPCs are expanded but no data are currently available about Tang.

Objectives: Aim of this study was to assess Tang (CD11c +CD3 +CXCR4+) in peripheral blood (PB) and target organs of pSS as well as the association with EPCs (CD34 +CD133+VEGFR-2+) and clinical and serological features of the disease.

Methods: Thirty-six pSS patients and 20 sex- and age-matched healthy donors (HD) were enrolled. Phenotypic analysis of peripheral blood mononuclear cells was performed by flow cytometry using FITC, Pe, Pe-Cy7 or AlexaFluor647 labelled anti-human CD3, CD31, CXCR4, CD4, CD8, CD28, CD34, CD133, VEGFR-2, and IL-17 antibodies. Minor salivary gland (MSG) biopsies from 8 pSS patients were studied and compared to samples from 12 patients with sicca symptoms and either non-specific chronic sialadenitis (NSCS) or normal parenchyma (n=6 each). MSG sections were subjected to immunofluorescence staining to assess the presence of CD3 +CD31+CXCR4+Tang cells and the expression of the CXCR4-ligand CXCL12/SDF-1 chemokine.

Results: Circulating Tang were expanded in pSS compared to HD and were directly correlated to EPCs. Both Tang and EPCs directly correlated with disease activity as calculated with the EULAR Sjögren’s syndrome disease activity index (ESSDAI). Over 60% of Tang lacked CD28 revealing a senescent phenotype. Only a small proportion of Tang displayed either CD4 or CD8, the majority of Tang being therefore CD4-CD8- double negative (DN). A subset of Tang produced IL-17 and the highest proportion of IL-17-producing cells was observed among DN cells. Immunofluorescence analyses revealed the exclusive presence of infiltrating Tang cells along with increased expression of CXCL12/SDF-1 in pSS MSGs compared to either NSCS or normal MSGs.

Conclusions: Circulating Tang cells are expanded in pSS; display a senescent phenotype, are mainly CD4-CD8- DN and produce IL-17. Moreover, Tang cells home to and infiltrate MSGs in pSS, presumably through the SDF-1/CXCR4 chemotactic axis. Our data suggest that besides their positive effect together with EPCs in endothelial repair, Tang cells may contribute to disease pathogenesis.

Disclosure of Interest: None declared


CHARACTERISATION OF THE MOLECULAR PROFILE OF ALTERED GENES AND PATHWAYS IN MONOCYTES OF ANTIPHOSPHOLIPID SYNDROME PATIENTS RELATED TO THEIR ATEROTHROMBOTIC STATUS. EFFECTS OF IN VIVO UBIQUINOL SUPPLEMENTATION

C. Perez-Sanchez1, M.A. Aguirre1, L. Perez-Sanchez1, M. Luque-Tevar1, N. Barbarroja1, P. Ruiz-Limon1, Y. Jimenez-Gomez1, I. Arias de la Rosa1, M. C. Aboal1, P. Segui1, J.M. Villalba1, E. Collantes1, M.J. Cuadrado1, C. Lopez-Pedraza1, 2FMIACS-Virgen de la Victoria Hospital, Malaga; 3RadioLOGY, Reina Sofia Hospital-Imibic, Cordoba, Spain; 4Université de Bret, Brest, France; 5Genyo, Granada, Spain

Objectives: This study, developed within the IMI-JU project PRECISESADS framework, aimed to determine the enrichment on CD14 +CD16+monocyte subpopulations in SLE, APS and APS+SLE patients, and to investigate their role in the pathogenesis of these diseases.

Methods: The frequencies of monocyte subpopulations in the peripheral blood of 54 healthy donors and 46 SLE patients included in the PRECISESADS study (preliminary data) were determined by flow cytometry. A second cohort of 21 APS+SLE patients and a third cohort of 19 APS patients were included. Clinical profile, proinflammatory circulating mediators, and Peroxide levels were analysed. Carotid intima media thickness (CIMT) was evaluated as atherosclerosis marker.

Results: The CD14 +CD16+ (non-classical) monocyte population was enriched in SLE patients. Their frequencies were negatively associated with the positivity for anti-dsDNA antibodies, anti-SSB, anti-SSA and anti-U1RNP autoantibodies, as well as with renal involvement, which might reflect a recruitment process of this subset in renal tissues. Correlation studies further indicated a link between the reduced frequency of non-classical monocytes and increased levels of circulating inflammation mediators. Conversely, SLE patients with a previous history of thrombosis displayed a significant increase in circulating CD14 +CD16+ monocytes in relation to those without previous thrombotic manifestations. These results prompted us to evaluate the proportion and profile of this inflammatory subtype in parallel cohorts of SLE+APS and APS patients, on which thrombosis constitute the main clinical disorder.

SLE+APS patients showed enrichment in intermediate (CD14 ++CD16+) and non-classical monocytes, associated with the positivity for anti-dsDNA antibodies and the presence of atheroma plaques. Correlations among the frequency of these monocyte subsets and inflammatory mediators, and circulating cytokines, were also demonstrated. Yet, SLE+APS patients with renal involvement displayed reduced proportion of circulating intermediate and non-classical monocytes, suggesting that, as in the case of SLE patients, circulating CD16+ cells might have migrated to the kidney.

In APS patients we also saw enrichment of the CD16+ inflammatory subsets, associated to recurrent thrombotic events and a pathologic CIMT, pointing out that such subsets are associated with CVD. The scores of various markers related to autoimmunity, oxidative stress and prothrombotic molecules further correlated with the proportions of intermediate and non-classical monocytes.

Conclusions: Circulating CD16+ monocytes might constitute an important subpopulation of proinflammatory cells, whose frequency might identify APS, APS+SLE and SLE patients suffering thrombosis, atherosclerosis and organ involvement.

Acknowledgements: Supported by: EU/EFPIA-JU-PRECISESADS (n° 115166), Instituto de Salud Carlos III (FIS PI15/1339) and Junta Andalucía (CTS 7940).

Disclosure of Interest: None declared


November 4, 2023 by guest. Protected by copyright. http://ard.bmj.com/