Conclusions: TRADITIONAL DXA UNDERESTIMATES BONE MINERAL DENSITY OF THE SPINE IN AXIAL SPONDYLOARTHRPATHY

G. Fitzgerald, T. Anachebe, F. O’Shea. Department of Rheumatology, St James’s Hospital, Dublin 8, Ireland

Background: Axial spondyloarthropathy (axSpA) is an inflammatory arthritis which can lead to new bone formation (syndesmophytes) and ankylosis of the spine. Osteoporosis is a recognised feature of axSpA, but may be a promising tool.

Objectives: The aim of this study is:

1. To investigate different projections of DXA of the lumbar spine in axSpA patients
2. To assess the effect of syndesmophytes on spine BMD.

Methods: AxSpA patients were assessed with clinical exam, questionnaires and laboratory investigations. The burden of syndesmophytes on lateral x-rays of the spine can overestimate bone mineral density (BMD) due to the presence of syndesmophytes, potentially under-diagnosing osteoporosis. There is a real need to find an accurate method to assess BMD in axSpA patients. Lateral DXA of the lumbar spine is unaffected by syndesmophyte formation and may be a promising tool.

Objectives: The aim of this study is:

1. To investigate different projections of DXA of the lumbar spine in axSpA patients
2. To assess the effect of syndesmophytes on spine BMD.

Methods: AxSpA patients were assessed with clinical exam, questionnaires and laboratory investigations. The burden of syndesmophytes on lateral x-rays of the spine can overestimate bone mineral density (BMD) due to the presence of syndesmophytes, potentially under-diagnosing osteoporosis. There is a real need to find an accurate method to assess BMD in axSpA patients. Lateral DXA of the lumbar spine is unaffected by syndesmophyte formation and may be a promising tool.

Objectives: The aim of this study is:

1. To investigate different projections of DXA of the lumbar spine in axSpA patients
2. To assess the effect of syndesmophytes on spine BMD.

Methods: AxSpA patients were assessed with clinical exam, questionnaires and laboratory investigations. The burden of syndesmophytes on lateral x-rays of the spine can overestimate bone mineral density (BMD) due to the presence of syndesmophytes, potentially under-diagnosing osteoporosis. There is a real need to find an accurate method to assess BMD in axSpA patients. Lateral DXA of the lumbar spine is unaffected by syndesmophyte formation and may be a promising tool.

Objectives: The aim of this study is:

1. To investigate different projections of DXA of the lumbar spine in axSpA patients
2. To assess the effect of syndesmophytes on spine BMD.

Methods: AxSpA patients were assessed with clinical exam, questionnaires and laboratory investigations. The burden of syndesmophytes on lateral x-rays of the spine can overestimate bone mineral density (BMD) due to the presence of syndesmophytes, potentially under-diagnosing osteoporosis. There is a real need to find an accurate method to assess BMD in axSpA patients. Lateral DXA of the lumbar spine is unaffected by syndesmophyte formation and may be a promising tool.

Objectives: The aim of this study is:

1. To investigate different projections of DXA of the lumbar spine in axSpA patients
2. To assess the effect of syndesmophytes on spine BMD.

Methods: AxSpA patients were assessed with clinical exam, questionnaires and laboratory investigations. The burden of syndesmophytes on lateral x-rays of the spine can overestimate bone mineral density (BMD) due to the presence of syndesmophytes, potentially under-diagnosing osteoporosis. There is a real need to find an accurate method to assess BMD in axSpA patients. Lateral DXA of the lumbar spine is unaffected by syndesmophyte formation and may be a promising tool.

Objectives: The aim of this study is:

1. To investigate different projections of DXA of the lumbar spine in axSpA patients
2. To assess the effect of syndesmophytes on spine BMD.

Methods: AxSpA patients were assessed with clinical exam, questionnaires and laboratory investigations. The burden of syndesmophytes on lateral x-rays of the spine can overestimate bone mineral density (BMD) due to the presence of syndesmophytes, potentially under-diagnosing osteoporosis. There is a real need to find an accurate method to assess BMD in axSpA patients. Lateral DXA of the lumbar spine is unaffected by syndesmophyte formation and may be a promising tool.

Objectives: The aim of this study is:

1. To investigate different projections of DXA of the lumbar spine in axSpA patients
2. To assess the effect of syndesmophytes on spine BMD.

Methods: AxSpA patients were assessed with clinical exam, questionnaires and laboratory investigations. The burden of syndesmophytes on lateral x-rays of the spine can overestimate bone mineral density (BMD) due to the presence of syndesmophytes, potentially under-diagnosing osteoporosis. There is a real need to find an accurate method to assess BMD in axSpA patients. Lateral DXA of the lumbar spine is unaffected by syndesmophyte formation and may be a promising tool.