Antiphospholipid syndrome (APS) can affect any vascular bed and is characterised by a plethora of clinical manifestations related with different organ systems involvement. Accordingly, APS can affect any part of kidney vasculature and parenchyma such as renal arteries and veins, intra-renal arteries and arterioles, and glomerular capillaries. APS-associated nephropathy was first described in patients with primary APS, characterised by acute thrombotic lesions in glomeruli and/or arterioles (thrombotic microangiopathy) and chronic vascular lesions such as fibrous intimal hyperplasia of arterioles and interlobular arteries, organised thrombi with or without recanalisation, and fibrous arterial and arteriolar occlusions or focal cortical atrophy. APS nephropathy lesions have also been later described in patients with SLE-associated APS and SLE patients with positive antiphospholipid antibodies, always without APS, independently of lupus nephritis. The most common clinical manifestations of APS nephropathy include hypertension, microscopic hematuria, proteinuria (from mild to nephrotic range), and usually mild renal insufficiency. Arterial thromboses (especially stroke), pulmonary embolism, livedo reticularis, antecedent myocardial infarction, and lupus anticoagulant were strongly associated with histologic lesions of APS nephropathy. During this period of manifestation of APS (especially arterial thromboses) developed more frequently in SLE/non-APS patients with APS nephropathy than in those without APS nephropathy lesions. In the Sydney classification criteria for APS, APS nephropathy has been included in non-criteria APS manifestations. The significant association between the presence of APS nephropathy and antiphospholipid antibodies suggests a pathogenic role of antiphospholipid antibodies in the development of this nephropathy. Data from experimental and clinical studies support also a potential role of complement cascade activation, tissue factor activation, and activation of mTORC in APS nephropathy pathogenesis. Currently, there is no consensus on the treatment of APS nephropathy. Updated evidence about the role of anticoagulation, hydroxychloroquine, statins, and targeted therapies such as B-cell directed therapies, complement inhibition, tissue factor inhibition, and mTOR pathway inhibition will be discussed.

REFERENCES:

Disclosure of Interest: None declared

SP0166
ALL YOU NEED TO KNOW ABOUT KIDNEY DISEASE IN ANTI PHOSPHOLIPID SYNDROME

M. Tektonidou. First Department of Propaedeutic and Internal Medicine, Medical School, National and Kapodistrian University of Athens, Athens, Greece

Saturday, 16 June 2018
The links between gout and kidney function

SP0167
RENAL URATE TRANSPORTERS (SUMMARY FOR CLINICIANS)

F. Perez Ruiz. Department of Medicine, University of the Basque Country, Baracaldo, Spain

Gout was, and still is in some academic environments, a “metabolic” disease. The advent of allopurinol in the mid of the XXth century, the first xanthine-oxidase inhibitor, precluded that most subjects with “primary gout” were to suffer from overproduction of uric acid. No actual overproduction was neatly demonstrated and some empiric observations showed that “renal underexcretion” was working in most patients with gout.

In 2002, Nomoto and coworkers characterised the first renal urate transporter, Urate1, encoded by SL22A12, showing that the human knockout for URAT1 was associated with familiar hypouricemia. A bunch of uric acid transporters have been characterised since then, polymorphisms of some of them being associated with variability in renal handling of urate. The function of transporters is complex: PDZ5X1 (also known as NHERF3) is a scaffolding protein that binds to several urate transporters such as URAT1, OAT4, and NPT1. Therefore, PDZ5K1 plays a pivotal role in forming a urate-transporting multimolecular complex (also named “urate transportosome”) in humans. Hyperuricemia is no more a metabolic disease; it is a “transportopathy.” In addition, linkage of urate transporters to Na, P, and sugars may help understanding some comorbid conditions associated to hyperuricemia and gout, such as diabetes and hypertension.

In addition to the previously referred, ABCG2 is a cassette binding protein expressed in the in the kidney and more importantly in the intestine, where is involved with active excretion. The discovery of ABCG2 helped to explain that apparent overproduction in some patients is a “renal overload” due to impaired intestinal excretion.

A summarised knowledge on the urate transporters may be useful for clinicians implicated in the management of gout, as it may explain why XOs efficacy does differ in patients with apparent overproduction, why allopurinol response may be blunt in some patients, how targeting transporters may be helpful for the development of new urate-lowering molecules, and how to explain efficacy and safety models for uricosurics and combination therapies.

Disclosure of Interest: F. Perez Ruiz Grant/research support from: Asociación de reumatologistas de Cruces, Consultant for: Grünenthal, Menarini, Speakers bureau; Grünenthal, Menarini

SP0168
THE USE OF XO INHIBITORS IN CKD – PROS AND CONS

N. Dalbeth. University of Auckland, Auckland, New Zealand

The association of chronic kidney disease (CKD) and hyperuricemia is well established, and many observational studies have reported that hyperuricemia is associated with development and progression of CKD. Potential mechanisms of this observation will be discussed, including the potential for urate as an “innocent bystander” or as a causal mediator contributing directly to kidney injury. Xanthine oxidase inhibitors (XOIs) are the majority used urate-lowering drugs. Current evidence for efficacy and safety of XOIs for preventing or delaying progression of chronic kidney disease will be presented, both in the general population and in people with gout. The challenges of XO use in people with CKD will also be discussed, with specific reference to allopurinol dosing in CKD, and cardiovascular safety of febuxostat.

Disclosure of Interest: N. Dalbeth Consultant for: Kowa, Horizon

Saturday, 16 June 2018
Big data in pre-clinical research

SP0169
INTEGRATION OF OMICS DATA FOR PREDICTING RESPONSE TO ANTI TNF TREATMENT

L. Padyukov. Rheumatology Unit, Department of Medicine Solna, Karolinska Institutet, Stockholm, Sweden

Successful development of biologics for targeting specific molecules, like TNF, was a hallmark of new era in therapy of inflammatory and rheumatic diseases.
However, the approach based on interfering with TNF exceeds simple neutralisation of inflammatory cytokine and, possibly, this is why the prediction of response remains elusive. High costs of the treatment and irreversible tissue damage in non-responders have forced multiple attempts to predict response to anti TNF treatment using clinical, laboratory and molecular markers. There are several issues related to this type of studies that may include genetically heterogeneous groups of patients, different types of anti-TNF treatment, multiple types of response measures and are typically underpowered. Nowadays, an enormous amount of genetic, epigenetic and genomic data revived new expectations and stimulates producing of models for prediction of anti TNF response. We performed several studies based on different omics data in genetically homogeneous Swedish population that raises importance of disease subgrouping and interference of environmental factors on prediction values.

Disclosure of Interest: None declared

SATURDAY, 16 JUNE 2018
How do you sleep?

SP0170 RE-EVALUATE LIFE WHEN BROKEN SLEEP HAS A NEGATIVE EFFECT ON INFLAMMATORY ARTHRITIS
B.A. Esbensen, Rigshospitalet – Glostrup, Copecare, Centre for Rheumatology and Spine Diseases and Research Unit, Glostrup, Denmark

Despite improved possibilities for early diagnosis and medical treatment rheumatoid arthritis (RA) still causes stiffness and swelling in the joints. Poor sleep, chronic pain, fatigue, reduced physical function, depression and reduced quality of life are consequences of these symptoms and the inflammation is.1 About 60%–80% of patients with RA report poor sleep compared to 10%–30% in the background population.2 Moreover, it is known that in general exercise and neuro-motor exercise.3 Exercise offers a potentially attractive alternative or adjuvant treatment for these people with RMD who have sleep issues. The position stand from the American College of Sports Medicine (ACSM) regarding exercise for those with chronic conditions categorised by cardio-respiratory exercise, resistance exercise, flexibility exercise and neuro-motor exercise. This presentation will consider the evidence regarding the effect exercise has on sleep in general and how the examination of a participants exercise habits prior to any study might be important, as it may have an impact on its effectiveness. A key message from the talk will be the presentation of evidence of exercise programmes in people with RMD, according to the Frequency, Intensity, Time and Type (FITT) principle will be presented.

Disclosure of Interest: None declared

SP0171 SLEEP DISTURBANCES IN PRIMARY SJÖGREN’S SYNDROME: EVIDENCE FROM THE LITERATURE. PATIENT SLEEP DIARIES AND A QUALITATIVE FOCUS GROUP STUDY
K.L. Hackett,1,2,3 1Department of Social Work, Education and Community Wellbeing, Northumbria University, 2CRESTA Fatigue Clinic, Newcastle upon Tyne NHS Foundation Trust, 3Musculoskeletal Research Group, Institute of Cellular Medicine, Newcastle University, Newcastle upon Tyne, UK

Primary Sjögren’s syndrome is a systemic autoimmune disease which targets secretory glands resulting in dryness. Extra-glandular features include fatigue, pain and sleep disturbances. There are few studies exploring the specific sleep disturbances experienced by PSS patients; the impact of these disturbances or the potential acceptability of interventions to address some of these problems. In this talk, I will present work which begins to map the landscape of sleep disturbances in PSS.

Firstly, a systematic review of the literature explores sleep disturbances in PSS patients and identifies particular sleep symptoms which are problematic in these patients.1 Secondly, I will explore the relationship between daytime sleepiness (hyper-somnolence) and other clinical parameters in patients recruited to the UK Primary Sjögren’s Syndrome Registry. Thirdly, I will report on sleep diary data from 30 patients attending a multidisciplinary fatigue clinic in the North East of England. Finally, I will present findings from focus groups conducted with PSS patients and their partners. In this qualitative study, we explored the impact of sleep disturbances on patients and their families and potential acceptability of a non-pharmacological intervention (cognitive behavioural therapy for insomnia) to address specific sleep disturbances.

REFERENCES:

Disclosure of Interest: None declared

SP0172 WHAT EFFECT DOES EXERCISE HAVE ON SLEEP IN RMD?
S.G. McKenna, Discipline of Physiotherapy, School of Allied Health, University of Limerick, Limerick, Ireland

Circadian rhythms are physical, mental and behavioural changes that follow a daily cycle. Sleep in an essential aspect in maintaining the body’s circadian rhythm and maintain health-related quality of life (HRQoL) thereby, sleep disturbances can have a detrimental impact on some. The Outcome Measures in Rheumatology (OMERACT) has identified sleep as one of the key outcomes important to RMD patients. Patients with various immune-mediated inflammatory diseases, including rheumatoid arthritis, have reported disturbed sleep and reduced sleep duration, further adding to their disease burden.1–3 It has been well established that being physically active and taking regular exercise are important for those who have been diagnosed with RMD’s.6 Exercise has been identified as an important part of the nonpharmacological management of poor sleep duration and in improving sleep quality however, in a 2013 Cochrane review that examined exercise and fatigue in RA. It was noted by the authors that sleep quality was yet to be examined in this population. Moreover, it is known that in general exercise improves mood state, which can also be an additional factor in improving sleep duration and sleep quality.7

Exercise offers a potentially attractive alternative or adjuvant treatment for these people with RMD who have sleep issues. The position stand from the American College of Sports Medicine (ACSM) regarding exercise for those with chronic conditions categorised by cardio-respiratory exercise, resistance exercise, flexibility exercise and neuro-motor exercise. This presentation will consider the evidence regarding the effect exercise has on sleep in general and how the examination of a participants exercise habits prior to any study might be important, as it may have an impact on its effectiveness. A key message from the talk will be the presentation of evidence of exercise programmes in people with RMD, according to the Frequency, Intensity, Time and Type (FITT) principle will be presented.