the number of emergency room visits, hospitalisation admissions and infections were investigated in the follow-up.

Results: One hundred twenty-three patients were included, 74 (60.2%) women, the mean age was 79.41 years old. Fifty-six (45.53%) received GCs alone (group 1) and 67 (54.48%) received GCs and MTX as an adjuvant treatment at some time during follow-up (group 2). 30 of these 83 patients (24.39% of total patients) received MTX in the first trimester after diagnosis (group 3). The cumulative doses of GCs, number of patients with relapses, visits to the emergency room and hospitalisation admissions are shown in the table 1. In none of these variables there were statistically significant differences among the three groups, except for the number of patients with relapses, which was greater in group 2 than in group 1 (p=0.03). The number of relapses in patients who received MTX early (group 3) was 56.7%, in the rest of patients (who only received GCs and those who started MTX after the first trimester) was 52.69% and 33.3% of the patients in group 3 and 21.5% of the rest of the patients presented infections.

Group 1: GCs alone
Group 2: GCs+MTX at some moment during the follow-up
Group 3: GCs and MTX since the 1st trimester

<table>
<thead>
<tr>
<th>Group 1</th>
<th>Group 2</th>
<th>Group 3</th>
</tr>
</thead>
<tbody>
<tr>
<td>N</td>
<td>6193</td>
<td>7772</td>
</tr>
<tr>
<td>Cumulative GCs doses at 6 month (mg±SD)</td>
<td>7028±111 230</td>
<td>8976±111 148</td>
</tr>
<tr>
<td>Cumulative GCs doses at 12 months (mg±SD)</td>
<td>±7154</td>
<td>±756</td>
</tr>
<tr>
<td>Cumulative GCs doses at 24 months (mg±SD)</td>
<td>7759±22522</td>
<td>9383±3252</td>
</tr>
<tr>
<td>N of patients with relapses</td>
<td>20/56</td>
<td>42/67 (62.69%)</td>
</tr>
<tr>
<td>N of patients with emergency room visits</td>
<td>20 (35%)</td>
<td>22 (32.8%)</td>
</tr>
<tr>
<td>N of patients with hospitalisation admissions</td>
<td>16</td>
<td>21 (31.34%)</td>
</tr>
</tbody>
</table>

Conclusions: Whilst MTX have been used in an effort to reduce toxicity from GCs and to improve efficacy of treatment our observational study shows that there is no benefit from adjunct MTX in GCA either in terms of efficacy or toxicity.

REFERENCE:

Disclosure of Interest: None declared

THU449 DIAGNOSTIC PERFORMANCE OF ANTI-NEUTROPHIL CYTOPLASMIC ANTIBODIES IN A COHORT OF UNSELECTED SPANISH PATIENTS
J. Loreuero-Amigo1, J. Mestre Torres2, C.L. Franco Jara3a, A. Marin Sánchez2, R. Solans Laqué1. 1 Internal Medicine – Autoimmune Diseases Division; 2 Internal Medicine – Autoimmune Division; 3 Immunology Division, Valls d’Hebron University Hospital, Barcelona, Spain

Background: Antineutrophil cytoplasmic antibodies (ANCA) are the serological marker of some idiopathic systemic vasculitides, predominantly involving small and medium-sized blood vessels, such as granulomatosis with polyangiitis (GPA), microscopic polyangiitis (MPA) and eosinophilic granulomatosis with polyangiitis (EGPA), which are known as the ANCA-associated vasculitides (AAV). Nevertheless, ANCA have been reported in a number of other conditions.

Objectives: To retrospectively evaluate ANCA diagnostic accuracy in a cohort of unselected patients.

Methods: From January 2014 to December 2016 a total of 6781 serum samples with a test request for ANCA were submitted to the Immunology Department of a 1,000-bed tertiary teaching hospital from Barcelona (Spain), from both inpatients and outpatients. Indirect immunofluorescence (IIF) was performed for all requests using a commercially available “Granulocyte Mosaic 13” (EUROMMUN). IIF allowed recognition of three staining patterns: cytoplasmic (cANCA), perinuclear (pANCA) and atypical (xANCA). For the detection of antibodies against myeloperoxidase (MPO) and proteinase 3 (PR3) a chemiluminescent immuno-assay (CLIA) using commercially available “QUANTA Flash MPO/PR3” (INOVA diagnostics) was performed in patients with positive IIF.

We reviewed the clinical charts of patients that underwent ANCA testing and collected patients’ diagnoses, as established by their treating physician one year after sampling. In the event of multiple ANCA test in a single patient we include only the first test request (we excluded 1323 tests performed in 661 patients). We also excluded 184 patients with insufficient information and 306 ANCA tests with no diagnostic purpose. Therefore the study population includes 4968 patients.

Statistical analysis was performed with stata 14.2 (College Station, TX, USA). Diagnostic performance was assessed using sensitivity, specificity, positive likelihood ratio (LR+), positive and negative predictive values (PPV and NPV) and global efficiency. Confidence intervals (CI) were calculated using Wilson method.

Results: Only 34 patients (0.68%) received a diagnosis of AAV: 25 MPA, 6 GPA and 3 EGPA.

Sensitivity Specificity LR+ PPV NPV Efficiency
[CI 95%] [CI 95%] [CI 95%] [CI 95%] [CI 95%] 

Positive IIF
94.1% [89.9 – 96.7] 98.4% [96.7 – 99.9] 99.9% [97.3 – 100] 99.9% [99.4 – 100] 99.9% [99.3 – 100] 99.6%

IF Typical pattern

cANCA/PR3 or pANCA/MPO
76.5% [60.8 – 86.7] 99.1% [95.4 – 99.9] 36.6% [26.4 – 46.8] 99.9% [99.9 – 100] 99.9% [99.9 – 100] 99.6%

The majority (87.1%) of patients had a negative ANCA test and only 12.9% were found positive by IIF. Among 643 positive patients IIF pattern distribution was: 457 (71.1%) atypical, 108 (16.8%) perinuclear and 78 (12.1%) cytoplasmic pattern.