Conclusions: Our observations support the notion that incident BS might be getting milder. There might be a list of explanations for this observation. 1. It might be a biological phenomenon due to changing environmental causes. In this line the significant decrease in papulopustular lesions could be due to a more sanitary environment while the rather unchanging frequency of neurologic involvement might be its possible independence from the environment. 2. It might be that the awareness of BS is increasing and we are recognising less severe cases. 3. Another explanation might be the more effective treatment these patients received before they were referred which was not specifically sought in this survey.

REFERENCE:

Disclosure of Interest: None declared

THU0443
A PROBABILITY SCORE FROM A FAST TRACK CLINIC TO AID THE MANAGEMENT OF SUSPECTED GIANT CELL ARTERITIS
F. Laskou1, F. Coath1, S. Mackie2, S. Banerjee1, T. Aung1, B. Dasgupta1.
1Rheumatology, Southend University NHS Trust, Westcliff-On-Sea; 2Rheumatology, The Leeds Teaching hospitals NHS Trust, Leeds, UK

Background: Diagnosis of Giant Cell Arteritis(GCA) is difficult since its manifestations are protein-1. Under-diagnosis is associated with ischaemic complications whereas over diagnosis is associated with inappropriate glucocorticoids (GC). GCA is diagnosed by different specialties, including family physicians, who would benefit from a clinical prediction score. A fast track pathway also requires clinical triage in terms of probability of disease. We evaluated all referred patients (08/16–08/17) to develop a pre-test probability score (PTBS) to support a diagnostic pathway and decision-making.

Methods: The PTBS was generated from long standing clinical experience. Information collected at initial assessment was given varying positive weightage. This included baseline demographics (age-gender), symptomatology at presentation (onset, headache and scalp tenderness), ischaemic symptoms, constitutional symptoms, polyarthritis), C-Reactive protein (CRP) and examination findings (ischaemic ophthalmic complications, temporal artery abnormalities, extra-cranial abnormalities, cranial nerve palsies). Negative weightage was given for competing diagnoses (infection, cancer, head and neck pathology, systemic rheumatological diseases). The PTBS was compared with the final diagnosis as GCA or non-GCA 6 months after the initial assessment. Analysis was performed in Stata SE, version 13.1.

Results: 122 PTBS were collected of which CRP was missing in 1 case which was excluded from the analysis. 23 had a final diagnosis of GCA at 6 months follow up. The rest consist our control group (99 patients). The area under the ROC curve for the 121 cases was 0.953 (figure 1). Using the bootstrap method gave an estimated area under the ROC curve (95% confidence interval) of 0.953 (0.911, 0.994). At the point of inflection, corresponding to a cut point of 9.5, sensitivity was 95.7%, and specificity was 86.7%; the likelihood ratio for a positive test was 7.2 and the likelihood ratio for a negative test, 0.050. At this cut point, 88.4% cases were correctly classified.

Conclusions: This single centre retrospective study suggests that PTBS is a useful standardised assessment tool for rating pre-test probability for GCA with high levels of sensitivity and specificity. PTBS may reduce variation in clinical assessment and aid decision making. A patient with low probability score (<9.5) can be managed with colour doppler ultrasound examination (US) which if negative will exclude the disease and the clinician can reassure patient. A patient with high PTBS and positive US can safely have the disease confirmed and treated with GC. With intermediate scores, conflicting PTBS and US findings are equivocal US, additional investigations including TA biopsy and/or other imaging scans may be needed. Our results need validation in a prospective study and in internal and external validation cohorts. PTBS has the potential for forming the basis for education programme for the correct and early diagnosis of GCA and limit inappropriate GC in non-GCA mimics.

REFERENCES:

Disclosure of Interest: None declared

THU0444
AORTIC DILATATION IN PATIENTS WITH LARGE VESSEL VASCULITIS: A LONGITUDINAL CASE CONTROL STUDY USING POSITRON EMISSION TOMOGRAPHY COMPUTED TOMOGRAPHY
F. Crescentini1, F. Muratore1, L. Spaggiari2, G. Pazzola1, L. Boiard1, N. Pipitone2, C. Salvamari1, 1Rheumatology Unit; 2Radiology Unit, Azienda USL-IRCCS di Reggio Emilia, Reggio Emilia, Italy

Objectives: To evaluate aortic diameter and predictors of aortic dilatation using FDG-PET/CT in a longitudinally followed cohort of patients with large vessel vasculitis (LVV) compared with controls.

Methods: All consecutive patients with LVV who underwent at least 2 PET/CT scans between January 2008 and May 2015 were included. The first and last PET/CT study of each patient was independently evaluated by a radiologist and a nuclear medicine physician. The diameter of the aorta was measured at 3 different levels: ascending, descending thoracic and infrarenal aorta. Aortic dilatation was defined as a diameter of >4 cm in the ascending, >4 cm in the descending thoracic and >3 cm in the infrarenal aorta. Aortic FDG uptake was graded at the same levels using a 0–3 semiquantitative scale and was reported as negative (score 0 or 1) or positive (score 2 and 3). Patients younger than 50 years at symptoms’ onset were classified as Takayasu arteritis (TAK), while those older than 50 years as giant cell arteritis (GCA). 29 age- and sex-matched patients with lymphoma who underwent at least 2 PET/CT in the same time interval without evidence of aortic FDG uptake were selected as controls.

Results: 93 patients with LVV were included in the study. 53% of patients were newly-diagnosed; the remaining 47% had a median disease duration of 34 months. At first PET/CT, the mean (SD) diameter of descending thoracic aorta was significantly higher in LVV patients compared with controls [28.07 (4.40) vs 25.60 (3.59) mm, p=0.012]. At last PET/CT, after a median time of 31 months, patients with LVV compared with controls had higher diameter of ascending [35.41 (5.54) vs 32.97 (4.11) mm, p=0.029] and descending thoracic aorta [28.42 (4.82) vs 25.72 (3.55) mm, p=0.007] and more frequently had aortic dilatation [19% vs 3%, p=0.023]. Significant predictors of aortic dilatation were male sex [OR 7.27, p<0.001], and the diameter of ascending [OR 2.03, p<0.001], descending thoracic [OR 1.57, p<0.001] and infrarenal [OR 1.25, p=0.005] aorta at first PET/CT study. Positive aortic FDG uptake, disease activity and elevated inflammatory markers at first PET/CT were not associated with an increased risk of aortic dilatation. The results remained unchanged when the analysis were restricted to the 48 newly-diagnosed LVV patients. According to age at symptoms onset, 56% of patients were classified as GCA and 44% as TAK. Compared with TAK, GCA patients had higher aortic diameter at all 3 levels evaluated in both first and last PET/CT study. However there were no differences in the proportion of patients with aortic dilatation (at last PET/CT 23% in GCA vs 15% in TAK, p=0.306). The results remained unchanged when the analysis were restricted to the newly-diagnosed patients.

Conclusions: Patients with large vessel vasculitis are at increased risk of aortic dilatation compared with age- and sex-matched controls. Significant predictors of aortic dilatation are male sex and aortic diameter at first imaging study. Positive aortic FDG uptake at first PET/CT is not associated with increased risk of aortic dilatation.

Disclosure of Interest: None declared