The evolving role of mepolizumab in EGPA tapering in axial spondyloarthritis

Tapering and flaring in PsA and SpA

SP0119
THE EVOLVING ROLE OF MEPOLIZUMAB IN EGPA
F. Moosig, Rheumazentrum Schleswig-Holstein Mitte, Neumünster, Germany

There is overwhelming evidence that eosinophiles play a key role in the pathogenesis of EGPA. IL-5 is the central cytokine for eosinophil maturation, eosinophil release from the bone marrow and eosinophil survival. Mepolizumab is an antibody neutralising IL-5, which proved efficient in the hypereosinophilic syndrome and eosinophilic asthma, amongst other conditions. Targeting this cytokine in EGPA therefore seemed plausible. Two small uncontrolled trials demonstrated the safety of mepolizumab in EGPA and indicated the potential for induction of remission, maintenance and steroid sparing. A randomised controlled trial (MIRRA) confirmed those findings and showed higher rates of accrued remission for mepolizumab when given as an ad-on medication to conventional immunosuppressants and/or glucocorticoids. Steroid sparing properties were also confirmed. MIRRA and previous trials in different indications issued no major safety concerns. Based on this trial drug approval for EGPA might be feasible. To date the major problems in the treatment of EGPA are 1) refractory disease 2) a high frequency of relapses and 3) the need for high glucocorticoid doses in many patients. Mepolizumab could be used for induction of remission in addition to glucocorticoids. However, its not yet clear, which subgroup of patients might profit most. Especially patients with severe disease have not been investigated. For patients with refractors non-severe disease mepolizumab is a potential option. Mepolizumb also was efficient in preventing relapses and therefore may also be used for maintenance of remission, especially in patients suffering from prevalent relapses. Finally, patients with high need for glucocorticoids could profit from mepolizumab, particularly in case of steroid-sensitive comorbidities or steroid-induced complications.

Disclosure of Interest: F. Moosig Consultant for: Chugai, GSK

FRIDAY, 15 JUNE 2018

SP0120
CURRENT CONTROVERSIES IN THE USE OF RITUXIMAB FOR INDUCTION AND MAINTENANCE OF AAV DISEASE
B. Terrier, on behalf of French Vasculitis Study Group, Internal Medicine, Cochin Hospital, Paris, France

Rituximab has now taken one of the first places in induction remission treatment of ANCA-associated vasculitides (AAVs) and is challenging cyclophosphamide. Rituximab is an anti-CD20 IgG1 mouse–human chimeric antibody that selectively depletes mature and memory B-cells.

Use of rituximab for induction

In AAVs, rituximab non-inferiority to cyclophosphamide as induction agent was clearly established. In the RAVE trial, which compared oral cyclophosphamide to rituximab as induction regimen, the remission rate at 6 months was 64% in the rituximab group and 53% in the cyclophosphamide group. Consequently, rituximab has revolutionised AAVs’ standard-of-care and is now recommended as first-line therapy for many patients with granulomatosis with polyangiitis (GPA) and microscopic polyangiitis (MPA).

The RAVE trial prospectively compared two arms: induction with glucocorticoids and/or glucocorticoids. Steroid sparing properties were also confirmed. MIRRA and previous trials in different indications issued no major safety concerns. Based on this trial drug approval for EGPA might be feasible. To date the major problems in the treatment of EGPA are 1) refractory disease 2) a high frequency of relapses and 3) the need for high glucocorticoid doses in many patients. Mepolizumab could be used for induction of remission in addition to glucocorticoids. However, its not yet clear, which subgroup of patients might profit most. Especially patients with severe disease have not been investigated. For patients with refractors non-severe disease mepolizumab is a potential option. Mepolizumab also was efficient in preventing relapses and therefore may also be used for maintenance of remission, especially in patients suffering from prevalent relapses. Finally, patients with high need for glucocorticoids could profit from mepolizumab, particularly in case of steroid-sensitive comorbidities or steroid-induced complications.

Disclosure of Interest: F. Moosig Consultant for: Chugai, GSK

SP0121
TAPERING IN PSA – TO DO OR NOT TO DO?
L. Coates, Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, University of Oxford, Oxford, UK

This talk will discuss the current evidence regarding tapering or drug withdrawal in patients with psoriatic arthritis. With increasing numbers of patients achieving good outcomes such as remission, the issue of how long to continue treatment has been raised. Given the cost of some of the newer therapies, this question also has significant cost effectiveness implications.

There is a limited amount of evidence but data from randomised and observational studies will be discussed as well as key research questions that remain outstanding.

Disclosure of Interest: None declared

SP0122
TAPERING IN AXIAL SPONDYLOARTHRITIS – TO DO OR NOT TO DO?
P. Podobnyy, Charité Universitätsmedizin Berlin, Berlin, Germany

According to the current version of the ASAS-EULAR management recommendations for axial spondyloarthritis, tapering of a biological disease modifying anti-rheumatic drug (bDMARD) can be considered once a remission is achieved.

Tapering is opposed to a complete discontinuation that is associated with a very high disease flare risk (70%–100%) in axial spondyloarthritis. The question of tapering in axial spondyloarthritis has been addressed in a number of small clinical trials: in the majority of the them, tapering (either dose reduction or increase of the injection/infusion interval) could be done without a disease flare. It is, however, not clear, whether the tapering has any beneficial effect for a patient (i.e., in terms of safety) in addition to a cost-saving effect. Further, a number of questions related to tapering still requires an evidence-based answer: a) what is the optimal time-point of the initiation of tapering (e.g., 3, 6 or 12 months after remission achievement)? b) what is the optimal tapering regimen? c) are there reliable predictors of sustained remission/disease flare during tapering? The question of a bDMARD tapering after remission achievement will be at least partially answered in ongoing