AbbVie, Celgene, Janssen, Chugai, Lilly, Novartis, Pfizer, MSD, and UCB, P. Zueger Employee of: AbbVie, J. Kalabic Employee of: AbbVie, M. Wu Employee of: AbbVie, I. Lagunes Galindo Employee of: AbbVie, F. Van den Bosch Grant/ research support from: AbbVie, Bristol-Myers Squibb, Celgene, Janssen, Lilly, Merck, Novartis, Pfizer, and UCB, Consultant for: AbbVie, Bristol-Myers Squibb, Celgene, Janssen, Lilly, Merck, Novartis, Pfizer, and UCB, Speakers bureau: AbbVie, Bristol-Myers Squibb, Celgene, Janssen, Lilly, Merck, Novartis, Pfizer, and UCB

DOI: 10.1136/annrheumdis-2018-eular.6754

THU0191 NOVEL FORMULATION OF CT-P13 FOR SUBCUTANEOUS ADMINISTRATION IN PATIENTS WITH RHEUMATOID ARTHRITIS: INITIAL RESULTS FROM A PHASE I/III RANDOMISED CONTROLLED TRIAL

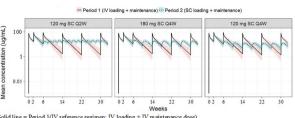
<u>R. Westhovens</u>¹, D.H. Yoo², J. Jaworski³, E. Matyska-Piekarska³, S. Smiyan⁴,
D. Ivanova⁵, A. Zielinska⁶, E.-K. Raussi⁷, A. Batalov⁸, S.J. Lee⁹, S.Y. Lee⁹, J.
H. Suh⁹. ¹University Hospital KU Leuven, Leuven, Belgium, ²Hanyang University Hospital for Rheumatic Diseases, Seoul, Korea, Republic of Ireland, ³REUMATIKA – Centrum Reumatologii NZOZ, Warszawa, Poland, ⁴State Higher Educational Institution "I. Ya. Horbachevskyi Ternopil State Medical University of MOH of Ukraine", Ternopil, Ukraine, ⁵Diagnostic-Consultative Center Aleksandrovska EOOD, Sofia, Bulgaria, ⁶Medycyna Kliniczna, Warszawa, Poland, ⁷North Estonia Medical Centre Foundation, Tallinn, Estonia; ⁸Medical University – Plovdiv, University Hospital Kaspela, Clinic of Rheumatology, Plovdiv, Bulgaria; ⁹Celltrion, Inc., Incheon, Korea, Republic of Ireland

Background: While the treatment with intravenous (IV) CT-P13, an infliximab biosimilar, is effective and well tolerated, a new subcutaneous (SC) CT-P13 formulation (CT-P13 SC) is developed to provide additional, more convenient treatment options and opportunity for self-injection.

Objectives: To find the optimal dose of CT-P13 SC and to evaluate efficacy, PK and safety over the first 30 weeks in patients with rheumatoid arthritis.

Methods: This study consists of 1 cohort with CT-P13 IV, and 3 cohorts with 3 different doses of CT-P13 SC injected biweekly. All enrolled patients initially received CT-P13 IV at Weeks 0 and 2 and patients who received 2 full doses and displayed no safety concerns were randomly assigned to receive either CT-P13 SC or IV at Week 6. Using part 1 result, PK-PD modelling was conducted for the 3 regimens.

Results: A total of 50 patients were enrolled, of whom 48 patients were randomly assigned into 4 cohorts.


Overall, the efficacy results of CT-P13 SC up to Week 30 were comparable to those of CT-P13 IV. Disease improvement by DAS28 and ACR20 were comparable across all 4 cohorts, regardless of the route of administration or dosage of CT-P13 (table 1).

The safety profiles in CT-P13 SC cohorts were generally comparable to CT-P13 IV. One of the 2 patients who experienced a hypersensitivity reaction became anti-drug antibody (ADA) positive at Week 6 and experienced hypersensitivity from Week 2 to 8. All injection site reactions were grade 1 or 2. The proportion of ADA (positive) was lower in the SC cohorts.

In PK-PD modelling, bioavailability was 59% (95% CI, 52%–67%). The dose linearity in SC regimens was confirmed based on Weeks 22 to 30 C_{trough}, AUC_τ and C_{max, ss} (figure 1). C_{trough} were greater (above 4 µg/mL) than the target exposure (1 µg/mL)^{[1][2]} in all SC regimens. There was a trend towards slightly lower DAS28 score in all SC regimens, which was consistent with the higher C_{trough} comparing with CT-P13 IV. Based on the exposure-response safety analyses, there was no correlation between PK (AUC_τ or C_{max}) and safety (IRRs or infections).

Abstract THU0191 - Table 1. Efficacy and safety up to Week 30

		Cohort 1 IV 3 mg/ kg (n=13)	Cohort 2 SC 90 mg (n=11)	Cohort 3 SC 120 mg (n=12)	Cohort 4 SC 180 mg (n=12)
DAS28 (CRP), mean	Week 0	5.4±0.8	6.3±0.8	5.7±0.9	5.5±0.8
±SD	Week 6 Week 22	3.9±1.5 3.9±1.6	4.6±1.1 3.7±1.0	3.9±1.2 3.3±1.4	3.4±1.2 2.8±1.3
Week 30	3.3±1.3	3.0±1.1	3.1±1.0	2.7±1.0	
ACR20,	Week 6	8 (61.5)	8 (72.7)	7 (58.3)	7 (58.3)
n (%)	Week 22 Week 30	8 (61.5) 11 (84.6)	8 (72.7) 10 (90.9)	9 (75.0) 10 (83.3)	11 (91.7) 12 (100)
Safety, n (%)	Hypersensitivity/ IRR	0	1 (9.1)	1 (8.3)	0
	Injection site reactions	0	2 (18.2)	0	2 (16.7)
	Infections	4 (30.8)	2 (18.2)	0	4 (33.3)
	ADA	9 (69.2)	3 (27.3)	4 (33.3)	1 (8.3)

Abstract THU0191 – Figure 1. Mean (± SD) Simulated CT-P13 Serum Concentration vs Time Profiles for the Simulated Fixed Dose SC Maintenance Dosing Regimens with Overlaid IV Maintenance Reference Treatment (Semi-Logarithmic Scale). Solid line=Period 1 (IV reference regimen: IV loading+IV maintenance dose). Dashed line=Period 2 (SC test regimen: IV loading+SC maintenance dose)

Abstract THU0191 – Table 2. Summary of Steady State Median (Prediction Interval 5th-95th percentile) CT-P13 Exposure Results

Simulated Dose Regimen	C _{trough}	AUC22-30wk	C _{max}	
	(µg/mL)	(h·µg/mL)	(µg/mL)	
3 mg/kg IV every 8 weeks	1.53	16725.64	76.01	
	(0.18 - 5.2)	(9328.94 - 26297.08)	(52.73 - 103.21)	
120 mg SC every 2 weeks	13.66	22717.66	18.95	
	(6.66 - 24.25)	(12849.49 - 37845.41)	(11.38 - 30.81)	
180 mg SC every 4 weeks	6.66	17060.69	17.47	
	(2.55 - 13.7)	(9660.52 - 28442.43)	(11.13 - 26.76)	
120 mg SC every 4 weeks	4.44	11375.19	11.65	
	(1.7 - 9.14)	(6440.93 - 18976.74)	(7.42 - 17.84)	

Treatment continuation in patients enrolled with SB4 or oETN who were bionaive until enrollment.

Conclusions: CT-P13 SC showed comparable efficacy and safety with CT-P13 IV. The preliminary results suggest CT-P13 SC as a future alternative treatment of infliximab.

REFERENCES:

- [1] Takeuchi, et al. 2009.
- [2] Mori, et al. 2007.

Disclosure of Interest: R. Westhovens Grant/research support from: Celltrion, Inc., BMS and Roche, Consultant for: Celltrion, Inc., Galapagos/Gilead and Janssen, D. H. Yoo Grant/research support from: Celltrion, Inc., J. Jaworski Grant/ research support from: Celltrion, Inc., E. Matyska-Piekarska Grant/research support from: Celltrion, Inc., S. Smiyan Grant/research support from: Celltrion, Inc., D. Ivanova Grant/research support from: Celltrion, Inc., PPD, Quintiles, Egis Pharmaceuticals, and Pfizer., A. Zielinska Grant/research support from: Celltrion, Inc., E.-K. Raussi Grant/research support from: Celltrion, Inc., S. J. Lee Employee of: Celltrion, Inc., S. Y. Lee Employee of: Celltrion, Inc., J. H. Suh Employee of: Celltrion, Inc.

DOI: 10.1136/annrheumdis-2018-eular.1810

THU0192 RETENTION RATES FOR ETANERCEPT: COMPARING THE ORIGINAL WITH A BIOSIMILAR

<u>A. Strangfeld</u>¹, L. Baganz¹, P. Herzer², J. Braun³, A. Gräßler⁴, A. Zink^{1,5}. ¹German Rheumatism Research Center, Berlin; ²Scientific Advisory Board, Munich; ³Rheumazentrum Ruhrgebiet, Herne; ⁴Rheumatologist, Pima; ⁵Charité University Medicine, Berlin, Germany

Background: Since the first approval of a biosimilar in 2015, the number of biosimilars approved for the treatment of rheumatoid arthritis (RA) in Germany has been increasing. Until now, there are just a few analyses investigating retention rates of biosimilars and the respective originators.

Objectives: To compare treatment survival on SB4 to the originator etanercept (oETN) using real-world data.

Methods: We used data gathered until December 2017 from the prospective, longitudinal RABBIT (*R*heumatoid *A*rthritis: O*b*servation of *bi*ologic *t*herapy) cohort. RA patients are enrolled in RABBIT when they start a biologic, biosimilar or new csDMARD treatment. For comparative analyses, patients starting SB4 either at enrollment or during follow-up were compared to patients enrolled with oETN since 2015. The drug survival rates during the first six months were analysed in biologic naive patients prior to enrollment using Kaplan-Meier curves.