OBJECTIVES: Osteopontin (OPN) is required for osteoclast recruitment. We hypothesised that AD exacerbates bone erosion by inducing OPN expression in synovial tissue. This study aimed to evaluate a novel role for AD in RA.

METHODS: The serum levels of AD and OPN were determined in 38 RA, 40 osteoarthritis (OA) patients, and 20 healthy controls using enzyme-linked immunosorbent assay (ELISA), AD and OPN production were measured by double immunofluorescence of RA and OA synovial tissue. Quantitative real-time PCR and immunofluorescence were used to evaluate the mRNA and protein expression levels of OPN in RA synovial fibroblasts (RASFs) and OA synovial fibroblasts after preincubation with AD, respectively. Migration of the RAW264.7 osteoclast precursors cell line was assessed using the Transwell migration assay and co-culture system. Bone destruction and osteoclastogenesis were assessed by immunohistochemistry, microcomputed tomography, and tartrate-resistant acid phosphatase (TRAP) staining in AD-treated collagen-induced arthritis (CIA) mice with or without AD.

RESULTS: The expression levels of OPN in the ankle joint tissues of the mice were examined by double immunofluorescence. Results indicated that the AD and OPN expression levels increased noticeably and were associated with each other in the RA serum. The AD distribution was coincident with that of OPN in the RA synovial tissue. AD stimulation of RASFs increased OPN production in a dose-dependent manner. AD-treated RASFs promoted RAW264.7 cell migration, and the effect was blocked with a specific antibody against OPN. Silencing of OPN using lentiviral-OPN short hairpin RNA reduced the number of TRAP-positive osteoclasts and the extent of bone erosion in the AD-treated CIA mice. When bound to integrin αvβ3, OPN functions as a mediator of AD and osteoclasts.

CONCLUSIONS: Our study provides new evidence of AD involvement in bone erosion. AD induces the expression of OPN, which recruits osteoclasts and initiates bone erosion. These data highlight AD as a novel target for RA treatment.

Disclosure of Interest: None declared


THU0080

SERUM IRISIN AND MYOSTATIN LEVELS IN PATIENTS WITH RHEUMATOID ARTHRITIS

J.M.D. Silva 1, R. C. D. E. Santo 2, E.C. Freitas 2, N.F.T. Braz 2, E. L. M. Vieira 1, M. F. B. Ru Guimarães 1, A. C. E. Silva 1, A.M. Kakehashi 1, B. M. Xavier 1, 2

Department of Clinical Medicine, Federal University of Minas Gerais, Brazil

Background: Rheumatoid arthritis (RA) patients have loss of muscle mass. The balance between muscle protein synthesis and degradation is regulated by cytokines and growth factors, named myokines, such as irisin and myostatin. Myokines are mainly expressed by skeletal muscle and exert systemic effects promoting crosstalk among different tissues. Irisin increases cortical bone mass and its low levels are related to muscle atrophy and obesity. 1, 2 While myostatin is a negative regulator of muscle growth and regeneration and has a direct role in osteoclastogenesis of inflammatory bone destruction. 3, 4

Objectives: To evaluate serum levels of irisin and myostatin and body composition of RA patients and controls.

Methods: 122 female patients with RA, mean age 53 years, mean disease activity score (DAS28) 4.09, mean disease duration 11.2 years and mean body mass index 27.33 kg/m² were included. 69 age and sex-matched healthy subjects were enrolled as control group. Irisin (Phoenix Pharmaceuticals) and myostatin (R and D Systems) serum levels were evaluated by ELISA. Fat mass index (FMI;Kg/m²) and appendicular lean mass index (ALMI;Kg/m²) were assessed by total body dual-energy x-ray absorptiometry. Student’s t test and Spearman correlation were performed. Significance was set at p<0.05.

Table 1. Irisin and myostatin serum levels of RA patients and controls

<table>
<thead>
<tr>
<th>Irisin (mean ± SD)</th>
<th>Myostatin (mean ± SD)</th>
</tr>
</thead>
<tbody>
<tr>
<td>RA patients treated with biologics</td>
<td>13</td>
</tr>
<tr>
<td>RA patients not treated with biologics</td>
<td>27</td>
</tr>
<tr>
<td>Controls</td>
<td>30</td>
</tr>
</tbody>
</table>

*p<0.05 RA patients treated with biologics vs controls; **p<0.05 RA patients treated with biologics vs RA patients not treated with biologics. p<0.05 RA patients not treated with biologics vs controls.

Results: RA patients had decreased serum levels of irisin (25,61±2.25 vs 30,36 ±10.95 ng/ml; p<0.05) and myostatin (3011,28±1271,11 vs 4049,09±1610,01 pg/ml; p<0.05), decreased ALMI (6,09±0,88 vs 6,50±1,10; p<0.05) and increased FMI (11,26±3.30 vs 9,44±2.65; p<0.05), compared to controls. No correlations were observed among irisin and myostatin levels and ALMI and FMI. Of the 122 RA patients, 40 were analysed for the use of biologic medication. Serum levels of irisin and myostatin were different between RA patients treated and not treated with biologics (table 1).

Conclusions: RA patients presented loss of lean mass and gain of fat mass, as well as lower irisin and myostatin serum levels, in comparison with controls. Additionally, the use of biologic medication by patients impacted on myokines serum levels. Further analyses are needed for a better comprehension of irisin and myostatin roles in RA, and to verify their correlation to other RA features.

REFERENCES:

Disclosure of Interest: None declared


THU0081

IDENTIFICATION OF NOVEL AUTOANTIBODIES IN THE SYNOVIAL FLUID FROM PATIENTS WITH RHEUMATOID ARTHRITIS

K.-I. Goto 1, T. Kawai moto 2, A. Nakajima 3, M. Tahara 4, T. Ebata 3

1 Orthopaedic Surgery, Sakura Orthopaedic Hospital, Sakura, 2 Orthopaedic Surgery, Matsudo City Hospital, Matsudo, 3 Orthopaedic Surgery, Toho Univ. Sakura Hospital, Sakura, 4 Orthopaedic Surgery, Chiba-East National Hospital, Chiba, Japan

Background: Rheumatoid arthritis (RA) is a chronic, autoimmune and inflammatory joint disease with a poorly understood etiology. Despite widespread diagnostic use of anti-citrullinated protein antibodies and rheumatoid factor, there is strong demand for novel biomarkers to improve the diagnosis this disease.

Objectives: The purpose of present study is to investigate novel autoantibodies in the synovial fluid of RA patients.

Methods: 1) By using SEREX (Serological identification of antigens by recombinant cDNA expression cloning), we identified ten and several antigens from sera of RA patients. 2) Three epitope sites in the candidate antigens proteins were predicted and 18 mer peptides were synthesised. 3) Synovial fluid of the knees was obtained from 48 RA and 48 osteoarthritis (OA) patients. 4) Furthermore, Alpha-LISA was used to analyse the antibody levels in synovial fluid using synthetic poly-peptide as antigens.

Results: Significantly higher proportion of antibodies against lamin A (LMNA, RA 19871+13924 VS OA 6726+3975, p<0.000001) and cell growth-regulating nucleolar protein (CGRN, RA 19673+13314 VS OA 10614+6391, p<0.00007) were found in synovial fluid of RA as compared with OA.

Conclusions: We identified two novel autoantibodies in the knee synovial fluid of RA patients. These antibodies would have the potential to become diagnostic biomarkers of RA.

REFERENCES:

Disclosure of Interest: None declared


THU0082

IMPAIRED LEFT VENTRICULAR RELAXATION AND ITS ASSOCIATION WITH INFLAMMATORY MARKERS IN COLLAGEN-INDUCED ARTHRITIS

L. Mokedd 1, F.S. Michel 1, C. Mogane 1, P.H. Dessein 2, A.M. Millen 1

1 Physiology, University of the Witwatersrand, Parktown, Johannesburg, South Africa; 2 Rheumatology Division, Vrije Universiteit Brussel, Brussels, Belgium

Background: Patients with rheumatoid arthritis (RA) experience an increased risk of developing heart failure with a preserved ejection fraction. Although there is some evidence to support a role of chronic inflammation in the pathogenesis of impaired left ventricular (LV) function in RA, 1 the direct effects of inflammatory cytokines on the LV function in collagen-induced arthritis (CIA) (an experimental model most similar to RA) require further elucidation.

REFERENCES:
Objectives: The aim of this study was to determine LV systolic and diastolic function and their association with circulating inflammatory markers in CIA.

Methods: Male Sprague Dawley rats were randomly divided into two groups: a control group (n=12) and a collagen-induced arthritis group (CIA, n=21). Rats in the CIA group were immunised with 0.2 ml type-II bovine collagen emulsified in Freund’s adjuvant at the base of the tail followed by a 0.1 ml booster injection 7 days later. Eight weeks post-immunisation, markers of LV systolic function and geometry including ejection fraction (EF), fractional shortening (FS), stroke volume (SV) and LV end systolic diameter (ESD) were assessed echocardiographically using two-dimensional directed M-mode imaging. Markers of LV diastolic function including the early-to-late diastolic filling velocity ratio (E/A), the lateral (Lat e) and septal (Sep e) wall myocardial tissue lengthening at the mitral annulus and the ratio between early mitral inflow velocity and mitral annular early diastolic velocity (E/e') were assessed using pulsed Doppler and tissue Doppler echocardiography. Serum concentrations of interleukin 6 (IL-6), interleukin 1 (IL-1), tumour necrosis factor alpha (TNF-α) and C-reactive protein (CRP) were determined by an enzyme-linked immunosorbent assay.

Results: No significant differences in markers of systolic function or geometry (EF, FS, SV and ESD) were observed between the groups (p>0.05). Compared to the control group, E/A (control=2.17±0.39; CIA=1.48±0.46; p=0.0001) and Sep e (control=3.75±0.69; CIA=3.23±0.47; p=0.04) were lower in the CIA group. By contrast, E/e' (control=29.94±6.99; CIA=24.17±8.49; p=0.13) and Lat e (control=3.99±0.43; CIA=3.79±0.78; p=0.31) did not differ amongst the two groups. IL-6 (115±70.09 versus 365.3±88.96 pg/mL; p<0.0001), IL-1β (14±15.57 versus 23.68±49.01 pg/mL; p<0.0001), TNF-α (293.5±87.16 versus 626.0±119.7 pg/mL; p<0.0001) and CRP concentrations (0.23±0.34 versus 0.97±0.35 ng/mL; p<0.0001) were higher in the CIA compared to control group. A lower E/A was associated with TNF-α (r=-0.63; p=0.0003), IL-6 (r=-0.56; p=0.0001); IL-1β (r=-0.48; p=0.001) and CRP concentrations (r=-0.60; p=0.001) in the total sample. Lower TNF-α (r=-0.39 p=0.04) and IL-1β (r=-0.47, p=0.01) levels were associated with E/e' in the total sample.

Conclusions: Diastolic function is impaired in male Sprague Dawley rats with CIA. Our results indicate that exposure to high grade inflammation can reduce LV relaxation without impairing systolic function in CIA. Markers of inflammation were also associated with increased filling pressures in this animal model. Systemic inflammation may directly impact myocardial diastolic function in CIA.

References:

Acknowledgements: The work was supported by grant 81102274 from the National Natural Science Foundation of China (NSFC) (Hui Lin); grant 10GGY8644SF-023 from the Science and Technology Foundation of Chengdu (Hui Lin); grant 2017HZ0110 from Science and Technology Foundation of International Cooperation of Sichuan Province (Hui Lin)

Disclose of Interest: None declared
DOI: 10.1136/annrheumdis-2018-eular.5313