Objectives: Osteopontin (OPN) is required for osteoclast recruitment. We hypothesised that OPN exacerbates bone erosion by inducing OPN expression in synovial tissue. This study aimed to evaluate a novel role for AD in RA.

Methods: The serum levels of AD and OPN were determined in 38 RA, 40 osteoarthritis (OA) patients, and 20 healthy controls using enzyme-linked immunosorbent assay (ELISA). AD and OPN production were measured by double immunofluorescence of RA and OA synovial tissue. Quantitative real-time PCR and immunofluorescence were used to evaluate the mRNA and protein expression levels of OPN in RA synovial fibroblasts (RASFs) and OA synovial fibroblasts after preincubation with AD, respectively. Migration of the RAW264.7 osteoclast precursors cell line was assessed using the Transwell migration assay and co-culture system. Bone destruction and osteoclastogenesis were assessed by immunohistochemistry, microcomputed tomography, and tartrate-resistant acid phosphatase (TRAP) staining in AD-treated collagen-induced arthritis (CIA) mice with or without OPN silencing. The expression of OPN and AD in the ankle joint tissues of the mice were examined by double immunofluorescence.

Results: Our results indicated that the AD and OPN expression levels increased noticeably and were associated with each other in the RA serum. The AD distribution was coincident with that of OPN in the RA synovial tissue. AD stimulation of RASFs increased OPN production in a dose-dependent manner. AD-treated RASFs promoted RAW264.7 cell migration, and the effect was blocked with a specific antibody against OPN. Silencing of OPN using lentiviral-OPN short hairpin RNA reduced the number of TRAP-positive osteoclasts and the extent of bone erosion in the AD-treated CIA mice. When bound to integrin αvβ3, OPN functions as a mediator of AD and osteoclasts.

Conclusions: Our study provides new evidence of AD involvement in bone erosion. AD induces the expression of OPN, which recruits osteoclasts and initiates bone erosion. These data highlight AD as a novel target for RA treatment.

Disclosure of Interest: None declared


THU0081 IDENTIFICATION OF NOVEL AUTOANTIBODIES IN THE SYNOVIAL FLUID FROM PATIENTS WITH RHEUMATOID ARTHRITIS

K.-I. Goto1, T. Kawamoto2, A. Nakajima3, M. Tahara4, T. Ebata5. 1Orthopaedic Surgery, Sakura Orthopaedic Hospital, Sakura; 2Orthopaedic Surgery, Matsuos City Hospital, Matsuos; 3Orthopaedic Surgery, Toho Univ. Sakura Hospital, Sakura; 4Orthopaedic Surgery, Chiba-East National Hospital, Chiba, Japan

Background: Rheumatoid arthritis (RA) is a chronic, autoimmune and inflammatory joint disease with a poorly understood etiology. Despite widespread diagnostic use of anti-citrullinated protein antibodies and rheumatoid factor, there is strong demand for novel biomarkers to improve the diagnosis of this disease.

Objectives: The purpose of present study is to investigate novel autoantibodies in the synovial fluid of RA patients.

Methods: 1) By using SEREX (Serological identification of antigens by recombinant DNA expression cloning), we identified ten and several antigens from sera of RA patients. 2) Three epitope sites in the candidate antigens proteins were predicted and 18 mer peptides were synthesised. 3) Synovial fluid of the knees was obtained from 48 RA and 48 osteoarthritis (OA) patients. 4) Furthermore, Alpha-LISA was used to analyse the antibody levels in synovial fluid using synthetic polypeptide as antigens.

Results: Significantly higher proportion of antibodies against lamin A (LMNA, RA 1987±1392 VS OA 672±3975, p=0.000001) and cell growth-regulating nucleolar protein (CGRN, RA 19673±13314 VS OA 10614±6391, p=0.00007) were found in synovial fluid of RA as compared with OA.

Conclusions: We identified two novel autoantibodies in the knees synovial fluid of RA patients. These antibodies would have the potential to become diagnostic biomarkers of RA.

REFERENCES:
[1] Tianen P, Pfleghaar K, Shimi T, et al. A progeria mutation reveals function of ZNF641, a novel nucleolar protein (CGRN, RA 19673±13314 VS OA 10614±6391, p=0.00007) were found in synovial fluid of RA as compared with OA.

Disclosure of Interest: None declared


THU0082 IMPAIRED LEFT VENTRICULAR RELAXATION AND ITS ASSOCIATION WITH INFLAMMATORY MARKERS IN COLLAGEN-INDUCED ARTHRITIS

L. Mokotedi1, F. S. Michel1, C. Mogane1, P. H. Dessein2, A. M. Millen1. 1Orthopaedic Surgery, Sakura Orthopaedic Hospital, Sakura; 2Orthopaedic Surgery, Matsuos City Hospital, Matsuos; 3Orthopaedic Surgery, Toho Univ. Sakura Hospital, Sakura; 4Orthopaedic Surgery, Chiba-East National Hospital, Chiba, Japan

Background: Patients with rheumatoid arthritis (RA) experience an increased risk of developing heart failure with a preserved ejection fraction. Although there is some evidence to support a role of chronic inflammation in the pathogenesis of impaired left ventricular (LV) function in RA, the direct effects of inflammatory cytokines on the LV function in collagen-induced arthritis (CIA) (an experimental model most similar to RA) require further elucidation.

RESULTS:

Disclosure of Interest: None declared


Table 1. Irisin and myostatin serum levels of RA patients and controls

<table>
<thead>
<tr>
<th></th>
<th>Irisin (mean ±SD)</th>
<th>Myostatin (mean ±SD)</th>
</tr>
</thead>
<tbody>
<tr>
<td>RA patients</td>
<td>13 ±3,7,7,9±69</td>
<td>2488,64±1114,9±40</td>
</tr>
<tr>
<td>RA patients non-treated</td>
<td>27 ±25,93±6,89</td>
<td>3261,66±1156,28±28</td>
</tr>
<tr>
<td>Controls</td>
<td>30 ±30,36±10,95</td>
<td>4049,08±1610,01</td>
</tr>
</tbody>
</table>

p<0.05 RA patients treated with biologics vs controls; p<0.05 RA patients treated with biologics vs RA patients non-treated with biologics; p<0.05 RA patients non-treated with biologics vs controls.

Results: RA patients had decreased serum levels of irisin (25 ±1±8,25 ±30,36 ±10,95 ng/ml; p<0.05) and myostatin (3011,28±1271,11 vs 4049,08±1610,01 pg/ml; p<0.05), decreased ALMI (6,09±8,88 vs 6,50±1,10; p<0.05) and increased FMI (11,26±3,30 vs 9,4±2,65; p<0.05), compared to controls. No correlations were observed among irisin and myostatin levels and ALMI and FMI. Of the 122 RA patients, 40 were analysed for the use of biologic medication. Serum levels of irisin and myostatin were different between RA patients treated and non-treated with biologics (table 1).

Conclusions: RA patients presented loss of lean mass and gain of fat mass, as well as lower irisin and myostatin serum levels, in comparison with controls. Additionally, the use of biologic medication by patients impacted on myokines serum levels. Further analyses are needed for a better comprehension of irisin and myostatin roles in RA, and to verify their correlation to other RA features.

REFERENCES: