TOWARDS PRECISION MEDICINE IN CONNECTIVE TISSUE DISEASES: GENOMIC AND TRANSCRIPTOMIC STUDIES

J. Sainz1,7, B. Parker3, I. N. Bruce3.

Background: To date, 18 genotypes linked with enhanced interferon signalling and severe inflammatory multi-system disease, have been identified. Functional studies in these disorders has led to significant advances in the understanding of type I interferon signalling. Understanding the role of these same genes in the pathogenesis of Connective Tissue Diseases (CTDs) may help guide precision medicine in this field.

Objectives: To study the relationship between phenotypic, serological, genomic and transcriptomic characteristics in adults with Connective Tissue Diseases (CTDs).

Methods: Following clinical and serological phenotyping, targeted exome sequencing was performed in 100 adults with CTDs. The CTDs include: systemic lupus erythematosus, Sjogren’s syndrome, polymyositis, dermatomyositis, polymyalgia rheumatica, giant cell arteritis, and Wegener’s granulomatosis. The targeted 200-gene panel was designed based on data from human or animal studies associating gene function with autoimmune diseases, particularly lupus. Type I interferon stimulated gene (ISG) signature score was calculated from quantitative PCR assessment of six interferon stimulated genes and interferon alpha was directly assayed by single-molecule array (Simoa) digital ELISA technology in all cases.

Results: Targeted exome sequencing in adults with CTD identified potential monogenic causes in 5% of cases, with causative genes including known type I interferon-associates, such as TREX1, C1q and PEPD. An ISG signature was present in 35% of the cohort and showed significant correlation with the Simoa interferon alpha assay (r=0.854) (figure 1).

Conclusions: Drug development in CTDs is notoriously slow. However, recent drug developments in type I interferon modulation in terms of JAK-STAT inhibition and interferon receptor antibodies offer great promise for a subset of patients. Our work demonstrates that through deep phenotyping of patients with corollary omic studies, a CTD subset, that is not restricted to a single diagnostic grouping, can be identified in whom targeted anti-interferon therapy would likely be of great value.

REFERENCES:

ACKNOWLEDGEMENTS: This research was funded by the NIHR Manchester Biomedical Research Centre. The views expressed are those of the author (J.S.) and not necessarily those of the NHS, the NIHR or the Department of Health. YJC acknowledges support from the European Research Council (fellowship GA 309449), and a state subsidy managed by the Agence Nationale de la Recherche (ANR; France) under the "Investments for the Future" program (reference ANR-10-IAHU-01). YJC and DD acknowledge support from the ANR (CE17001202) and Immunoqure for provision of Simoa equipment.

Disclosure of Interest: None declared

POLYMORPHISMS IN PHASE I-METABOLISING ENZYME AND HORMONE RECEPTOR GENES INFLUENCE THE RESPONSE TO ANTI-TNF THERAPY

L.M. Canet1, J.M. Sánchez-Maldonado1, A. Rodríguez-Ramos1, C.B. Lupiáñez1, A. Hazen2, H. Canhão3, M. Martínez-Bueno3, A. Escudero3, J. Segura-Caterina4, S. B. Sorensen5,6, M.L. Heltand2, M.J. Soto-Pinto7, M.A. Ferrer8, A. García9, B. Grintborg10,11, I. Filipovic12, E. Pérez-Pampín13, A. González-Salazar13, A. López-Nevo13, P. Conesa-Zamora15, A.A. den Broeder16, S. Da Vita14, S.E. Hove Jacobsen15, E. Collantes15, L. Quatrucciu16, J.E. Fonseca16, M.J. Coenen16, V. Andersen16,17, R. Calzí-Calzí18, J. Sargs19, A. Genovese, 2Genomic Oncology, GENYO, Centre for Genomics and Oncological Research; Pfizer/University of Granada/Andalusian Regional Government, PTG Granada, Granada, Spain; RNASEH2A, RNAseH2A, ENTHO, Endothelial regenerative medicine, University of Granada, Granada, Spain; CEDOC, EpiDoC Unit, NOVA Medical School and National School of Public Health, University of Granada, Granada, Spain; Rheumatology department, Reina Sofia Hospital/IMIBIC/University of Córdoba, Córdoba, Spain; 3The Danish Rheumatologic Biobank and the DANBIO registry, Copenhagen Centre for Arthritis Research (COPECARE), Center for Rheumatology and Spine Diseases, Centre of Head and Orthopaedics, Rigshospitalet, Glostrup, Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark; 4Rheumatology department, Virgen de las Nieves University Hospital, Granada, Spain; 5Department of Rheumatology, Gentofte and Herlev Hospital, Copenhagen University Hospital, Copenhagen, Denmark; 6Laboratory of Neurogenetics, Nijmegen, Netherlands; 7Department of Medical and Biological Sciences, Clinic of Rheumatology, University of Udine, Udine, Italy; 8Department of Biochemistry and Immunology, Hospital of Southern Jutland, Jutland, Denmark; 9Rheumatology and Metabolic Bone Diseases Department, Hospital de Santa Maria, CHLN; 10Rheumatology Research Unit, Instituto de Medicina Molecular, Faculty of Medicine, University of Lisbon, Lisbon Academic Medical Center, Lisbon, Portugal; 11Immunology Center, Xarxa de Genètica i Diversitat Funcional de la Reacció Inmunitària, Universitat de Barcelona, Barcelona, Spain; 12Institute of Molecular Medicine, Faculty of Health Sciences, University of Southern Denmark, Odense, Denmark.

Background: Although the etiology of rheumatoid arthritis (RA) remains unclear, there are evidences suggesting a role of sex steroid hormones in determining the onset and progression of the disease.

Objectives: The aim of this study was to evaluate whether 47 single nucleotide polymorphisms (SNPs) in steroid hormone-related genes are associated with the risk of RA and anti-TNF drug response.

Methods: We conducted a case-control study in 3 European populations including 2936 RA patients and 2197 healthy controls. Of those a total of 1985 RA patients were included in the association analysis. The area under the curve (AUC) of a receiver operating characteristic (ROC) curve analysis and a 2 log likelihood ratio (LR) test were used to assess whether the genetic model fitted significantly better the data compared to the reference model. A randomization test (50,000 iterations) was run to confirm the consistency of the results.

Results: Although none of the selected variants played a relevant role in modulating RA risk, the meta-analysis of the linear regression data with those from the DREAM and DANBIO registries showed a significant correlation of the CYRPARS1 rs1733927 and CYP2C9 rs1799853 variants with changes in DAS28 after the administration of anti-TNF drugs (p=0.00074, and p=0.006). An overall haplotype

Acknowledgements: This research was funded by the NIHR Manchester Biomedical Research Centre. The views expressed are those of the author (S) and not necessarily those of the NHS, the NIHR or the Department of Health. YJC acknowledges support from the European Research Council (fellowship GA 309449), and a state subsidy managed by the Agence Nationale de la Recherche (ANR; France) under the "Investments for the Future" program (reference ANR-10-IAHU-01). YJC and DD acknowledge support from the ANR (CE17001202) and Immunoqure for provision of Simoa equipment.
analysis also showed that the ESR2_LGG haplotype significantly associated with a reduced chance of having poor response to anti-TNF drugs (p=0.0009). Finally, a ROC curve analysis confirmed that a model built with 8 steroid hormone-related variants significantly improved the ability to predict drug response compared with the reference model including demographic and clinical variables (AUC=0.633 vs. 0.556; \(P_{\text{Herm}} = 1.52 \times 10^{-6} \)).

Conclusions: These data suggest that steroid hormone-related genes play a role in determining the response to anti-TNF drugs.

Disclosure of Interest: L. Canet: None declared, J. Sánchez-Maldonado: None declared, A. Rodríguez-Ramos: None declared, C. Lupiñach: None declared, H. Canhão: None declared, M. Martínez-Bueno: None declared, A. Escudero: None declared, J. Segura-Catena: None declared, S. Sörensen: None declared, M. Hetland: None declared, M. Soto-Pino: None declared, M. Ferrer: None declared, A. García: None declared, B. Glinkborg: None declared, I. Filipescu: None declared, E. Pérez-Pampín: None declared, A. González-Urtilúa: None declared, M. López-Nevot: None declared, P. Conesa-Zamora: None declared, A. den Broeder: None declared, S. da Vida: None declared, S. Hove Jacobsen: None declared, E. Colantes: None declared, L. Quartaucio: None declared, J. Fonseca: None declared, M. Coenen: None declared, V. Andersen Consultant for: VA has received compensation for consultancy and for being a member of an advisory board from MSD (Merk) and Janssen, R. Cáliz-Cáliz: None declared, J. Sainz: None declared. DOI: 10.1136/annrheumdis-2018-eular.1108

THU0011

LOCATION AND INTERACTION OF IgG HYPERVARIABLE REGIONS WITH PORPHYROMONAS GINGIVALIS PEPTIDYLARGININE DEIMINASE CITRULLINATED PEPTIDES, A HIGHLIGHT TO HYPERVARIABLE REGIONS WITH PORPHYROMONAS GINGIVALIS PEPTIDYLARGININE DEIMINASE CITRULLINATED PEPTIDES, A HIGHLIGHT TO HYPERVARIABLE REGIONS WITH PORPHYROMONAS GINGIVALIS PEPTIDYLARGININE DEIMINASE CITRULLINATED PEPTIDES, A HIGHLIGHT TO HYPERVARIABLE REGIONS WITH PORPHYROMONAS GINGIVALIS PEPTIDYLARGININE DEIMINASE CITRULLINATED PEPTIDES, A HIGHLIGHT TO HYPERVARIABLE REGIONS WITH PORPHYROMONAS GINGIVALIS PEPTIDYLARGININE DEIMINASE CITRULLINATED PEPTIDES, A HIGHLIGHT TO

Unit of Oral Basic Investigation – UIBO, Universidad El Bosque, RHEUMATOLOGY Group, Universidad Militar Nueva Granada, Bogotá D.C., Colombia

Background: IgG antibodies against citrullinated peptides are one of the most specific biomarkers used in the classification of the disease. The relationship between RA and periodontal disease is based on the process of citrullination. The enzyme in the most important bacteria related with periodontitis (Porphyromonas gingivalis) the Peptidylarginine Deiminase (PPAD) modify arginine residues to citrulline.

Objectives: To model in silico the binding of PPAD peptides with the hypervariable regions of IgG

Methods: One PPAD peptide with 15 residues was selected in silico by its recognition by B cells (IgCp and IgBcp) and T lymphocytes (ProPred, MHCPred). The peptide arginines were changed in silico by citrulline (Cit) with the ACD/ChemSketch software, obtaining four different peptides, natural, Arg1 changed, Arg1-Arg8 changed and a random sequence. The 3D peptide modelling was obtained using PEP-FOLD Server and the 3D structure of variable domains of the heavy and light chain of IgG was obtained with the SwissModel. The amino acids of the hypervariable regions capable of interacting were defined using ConSurf Server. The peptides and variable domains were prepared using Openbabel. Docking models were performed by Patchdock and PyMOL tool was used to rendering the structural complexes obtained.

Results: The 3D structure of IgG variable domains had a QMEN6 z-score <1. Modelling of the topological disposition of the amino acids was obtained and the interaction scores between the four peptides and light and heavy chain hypervariable regions were high, although the better score was in the natural peptide and light chain interaction. The heavy chain showed also a high score during the in silico interaction with the Cit1-Cit8 modified peptide. The approximate interface area of the receptor-ligand complex and the contact atomic energy (ACE) between the ligand and the receptor revealed the energy required for the interaction allowing its stability. The PPAD-IgG complexes showed the atomic contact maps in which the heavy chain hypervariable region contacted seven amino acids in all four peptides while only six contacts occurred between light chain and the peptides. The model showed the interactions between light chain and natural peptide (Arg1 with Gly100, Arg8 with Glu1) and for Cit1-Cit8 peptide, Cit8 interact with Thr10 (Cit1 has no contact). Regarding the heavy chain, Arg1 of natural peptide interacted with Trp47 while for Cit1-Cit8 peptide were Cit1 with Lys43 and Cit8 with Pro40.

Conclusions: The in silico model showed bacterial PPAD peptides with and without citrullination interact with the hypervariable regions of human IgG. The citrulline residues modify the 3D structure influencing the contact area with the heavy and light chain variable regions. Peptide with modifications of two arginine residues by citrulline presented a high interaction score indicating that may have an effective recognition for IgG.

Disclosure of Interest: None declared. DOI: 10.1136/annrheumdis-2018-eular.3171

THU0012

TARGETED RE-SEQUENCING OF 128 RHEUMATOID ARTHRITIS SUSCEPTIBILITY GENES UNCOVERS NOVEL RISK LOCI IN THE SINGAPORE CHINESE POPULATION

J. Y. Y. Yong, L. L. Goh, C. W. Lim, P. P. Q. Lim, G. L. X. Toh, E. T. Koh, K. P. Leong, the TTSH RA Study Group, Clinical Research and Innovation Office, Rheumatology, Allergy and Immunology, Tan Tock Seng Hospital, Singapore, Singapore

Background: Rheumatoid arthritis (RA) is a fairly common inflammatory autoimmune disease with a prevalence of 1% to 1.5%. Patients experience chronic joint pain, swelling and overtime irreversible joint damage. Genetic variants that contribute to rheumatoid arthritis (RA) susceptibility have been reported in more than 120 genes, including the HLA, PTPN22, CTLA4, TNFAIP3, PADI4, FCRL3, CD4, CD244 and CD40. The genetic susceptibility to RA has not been studied in the Singapore population.

Objectives: To identify novel risk variants in candidate genes previously reported to be associated with rheumatoid arthritis (RA) in Singapore Chinese RA patients positive for anti-citrullinated peptide antibodies (ACPA).

Methods: All the 128 known rheumatoid candidate genes associated with RA identified through GWAS were sequenced in 48 RA patients and 45 controls. The resultant data was analysed for association using single variant association and pathway-based association enrichment tests. In addition, the genetic burden due to rare variants was assessed using the C-alpha test. The candidate variants that showed significant association were validated in a larger cohort of 500 RA cases and 500 controls using mass array and Taqman technologies.

Results: 39 variants in 18 genes were identified using single variant association analysis and C-alpha test. IL6ST, with stepwise filtering. Among these, the significance variant in IL6ST, 5:55260065 (p.Cys47Phe) was significantly associated with RA in the Singapore Chinese patients (p=0.0194). The insignificant results of additional potential rare variants such as IL6ST, 5:55237103 and PXK rs199881366, was highly due to the limitations of our small sample size.

Conclusions: Our results suggest that IL6ST, 5:55260065, 5:55237103 and PXK rs199881366 confer risk of RA in ACPA-positive Chinese patients.