THU0001 DIFFERENTIAL METHYLATION AS A PREDICTOR OF METHOTREXATE RESPONSE IN PATIENTS WITH RHEUMATOID ARTHRITIS

N. Nair1, D. Plant1, J.M. Verstappen1, J.D. Isaac4, A.W. Morgan5, K.L. Huyrich3, A. Barton1, A.G. Wilson5, on behalf of MATURE. 1Arthritis Research UK Centre for Genetics and Genomics, University of Manchester; 2NIHR Manchester Musculoskeletal BRC, CMFT; 3Arthritis Research UK Centre for Epidemiology, University of Manchester, Manchester; 4NIHR Newcastle BRC, Newcastle upon Tyne Hospitals NHS Foundation Trust and Newcastle University, Newcastle; 5Leeds Institute of Rheumatic and Musculoskeletal Medicine, University of Leeds, Leeds, UK; 6University College Dublin School of Medicine and Medical Science, University College Dublin, Dublin, Ireland

Background: Methotrexate (MTX) is recommended as the first-line disease modifying anti-rheumatic drug (csDMARD) for the treatment of rheumatoid arthritis (RA), but up to 40% patients do not respond adequately, or experience adverse effects1; therefore, identifying blood-based biomarkers that predict treatment response is a research priority. DNA methylation is an epigenetic marker that modifies but does not alter DNA sequence; MTX may act, at least in part, by inhibiting intracellular methyl donor transfer leading to DNA hypomethylation2 so DNA methylation may act as a biomarker of MTX response.

Objectives: To identify differential DNA methylation signatures in whole blood associated with response to MTX in patients with RA.

Methods: DNA methylation was measured using the HumanMethylation450 BeadChip in DNA samples from individuals recruited to the Rheumatoid Arthritis Medication Study (RAMIS). Demographic and clinical data were collected prior to starting MTX (baseline) and at 6 months after commencing MTX. DNA was extracted from whole blood samples collected at baseline and at 4 weeks from patients who, at 6 months, had a EULAR good response (n=36) or EULAR poor response (n=36) to MTX. Differentially methylated positions (DMPs) between baseline and 4 weeks, and between good and poor response groups were identified using a linear model, adjusting for gender, age, cell composition, baseline disease activity score (DAS28), and smoking status. Additional analyses were performed to assess the association between methylation and change in DAS28 score and the individual DAS28 components over 6 months. DMPs with significant differences were selected for replication by pyrosequencing in an independent group of 100 patients with both baseline and 4 week samples available for testing. Using genome-wide genotype data for the same patients, replicated DMPs were investigated for methylation QTLs (meQTLs).

Results: The initial analysis identified differential methylation between good and poor responders at 2 CpG sites (DMPs) in samples taken at 4 weeks, with poor responders at both CpG sites. Differentially methylated regions (DMRs) were investigated for methylation QTLs (meQTLs). However, there were no meQTLs identified at these DMPs.

Conclusions: These results suggest DNA methylation may provide a biomarker of MTX response but requires replication in other larger data sets.

REFERENCES:

Disclosure of Interest: None declared

THU0002 NOVEL PATHOGENIC STOP CODON MUTATION IN THE NF-KB P65 SUBUNIT (RELA) ASSOCIATED WITH BOTH BEHÇET’S DISEASE LIKE SYNDROME AND NEUROMYELITIS OPTICA IN AN IRISH FAMILY

F. Adeeb1,2, E.R. Dorris3, S. Taniz4, W.L. Ng5, G.A. Stack1, A.G. Wilson5, A. D. Fraser: 1Graduate Entry Medical School, University of Limerick; 2Department of Rheumatology, University Hospital Limerick, Limerick; 3EULAR Centre of Excellence/UCD Centre for Arthritis Research, Conway Institute of Biomolecular and Biomedical Research, Dublin, Ireland

Background: Behçet’s disease (BD) has a complex multifactorial pathogenesis and presents with phenotypic heterogeneity predominantly mucocutaneous ulcerations, ocular lesions and skin manifestations. More recently, there have been reported cases of monogenic spectrum defects presented with BD-like similarities or phenotype.

Objectives: We investigated an Irish Caucasian family of eleven that included two half-sisters with early-onset BD, and another sister with neuromyelitis optica, all who were born to asymptomatic non-consanguines parents. More recently, one of the sisters’ daughter developed recurrent oral aphthous at the age of 10 years old.

Methods: Peripheral blood mononuclear cells were extracted from patients and non-afflicted donor blood using standard fractionation methods. Following quality assessment and quantification whole exome sequencing was performed on all participants.

Results: Whole exome sequencing data identified segregation of a novel pathogenic stop codon mutation in the nuclear factor κB p65 subunit (RelA) resulting in a non-functional protein. The mutation involves cytosine deletion and results in a His487ThrfsTer7 frameshift (His487ThrfsTer7) RelA resulting in loss of transcription activation-1 (TA1) and a portion of TA2 from RelA. The mutation was seen within the three generations, including the three half-sisters, their father as well as one of the proband’s daughter, potentially describing a new syndrome.

Conclusions: Our study suggests that loss-of-function mutations in the NF-κB pathway, a pivotal mediator of inflammation and apoptosis, are linked with the development of familial early-onset BD-like syndromes. Better insights and further understanding of this “orphan” immunogenetic syndrome carries high clinical impact to assist early disease recognition and potential discoveries of novel targeted therapies.

Disclosure of Interest: None declared

THU0003 COMPREHENSIVE EVALUATION OF THE EFFECTS OF RARE AND COMMON EXONIC ABCG2 VARIANTS ON GOUT SUSCEPTIBILITY

T. Hoshiba1, T. Takada2, H. Nakaoka3, Y. Toyoda4, B. Sibburkov5, K. Wakanai, H. Oyama5, I. Inoue6, T.R. Merriman7, N. Shionomiya1, H. Matsuo1. 1Department of Integrative Physiology and Bio-Nano Medicine, National Defense Medical College, Tokorozawa; 2Department of Pharmacy, The University of Tokyo Hospital, Faculty of Medicine, The University of Tokyo, Tokyo; 3Division of Human Genetics, Department of Integrated Genetics, National Institute of Genetics, Mishima, Japan; 4Institute of Rheumatology, Prague, Czech Republic; 5Department of Preventive Medicine, Nagoya University Graduate School of Medicine, Nagoya; 6Ryugoku East Gate Clinic, Tokyo, Japan; 7Department of Biochemistry, University of Otago, Dunedin, New Zealand

Background: Gout is the most common form of inflammatory arthritis and is caused by hyperuricemia. Many previous studies have indicated that common dysfunctional variants of the gene encoding ATP-binding cassette transporter subfamily G member 2/breast cancer resistance protein (ABCG2/BCRP) increase the risk of gout and hyperuricemia. In addition, we recently showed that rare non-synonymous variants are also risk factors for gout. However, we have not evaluated the effects of synonymous and splice-site variants of