Background: Rheumatoid arthritis (RA) is a chronic inflammatory autoimmune disease of unknown and complex etiology with severe detrimental effects for the patient’s quality of life. While rheumatoid factors (RF) and anti-citrullinated protein antibodies (ACPA) have been used extensively for the diagnosis of RA, no clear mechanism of action towards disease pathogenesis and progression has been identified. Importantly, both seropositive and seronegative RA patients experience significant improvement in disease severity following B cell depletion. Therefore, we hypothesised that B cells have a central role in ACPA+ and ACPA- RA patients.

Objectives: The characterisation of B and T cell populations in the peripheral blood and synovium of ACPA+, ACPA- and arthralgia patients. The identification of non-antibody mediated B cell function under the hypoxic conditions of the inflamed joint.

Methods: Peripheral blood, synovial fluid and tissue was obtained from ACPA+, ACPA- and arthralgia patients. Following enzyme digestion of the tissue, several 15-colour panels were used for the flow cytometric analysis of T and B cell populations of ACPA+, ACPA- and arthralgia patients compared to healthy subjects. Activation and function of healthy, sorted B cells, cultured in vitro and stimulated by CD40 and BCR mediated signals under normoxic (21% O2) and hypoxic (1% O2) conditions was examined.

Results: Pro-inflammatory cytokine production by peripheral blood CD4+ T cells is not significantly different between ACPA+, ACPA- and arthralgia patients compared to healthy controls. However, a significant reduction in CD27+ switched memory B cells was observed between healthy subjects and ACPA- RA patients. The aforementioned decrease in memory B cells is potentially a result of increased susceptibility to FAS induced apoptosis since healthy B cells cultured with RA patient plasma showed increased activation, CD80/CD86 and FAS expression. In the synovial fluid and synovial tissue, CD4 T cell pro-inflammatory cytokine production was increased when compared to peripheral blood CD4 T cells. Interestingly, ACPA-Ra patient CD4+ T cells produced reduced amounts of pro-inflammatory cytokines when compared to ACPA+ RA patient CD4+ T cells. Despite accumulation of switched and double negative (DN) memory B cells in the synovial fluid and tissue, compared to peripheral blood, no differences in synovial B cell subpopulation composition between ACPA+ and ACPA- RA patients was observed. Interestingly, sorted B cells from healthy subjects showed increased sensitivity to in vitro stimulation with increased expression of CD80 and CD86 when cultured under hypoxic conditions, while co-culture with RA patient synovial fibroblasts did not enhance this effect.

Conclusions: The increased capacity of ACPA+ compared to ACPA- RA patient synovial CD4+ T cells to produce pro-inflammatory cytokines, could be responsible for the more severe disease progression of ACPA+ compared to ACPA- RA. The accumulation of memory B cells in both ACPA+ and ACPA- RA, underlines a common, antibody independent, contribution of B cells in synovial inflammation. While B cell activation under hypoxic conditions and increased CD80/CD86 expression is potentially an important mediator for the emergence of auto-reactive T cells and disease progression in RA.

Disclosure of Interest: None declared


JUVENILE IDIOPATHIC ARTHRITIS PATIENTS EXHIBIT PERSISTENCE IN CD4 MEMORY T CELLS AND DISTINCT TRANSCRIPTOMIC SIGNATURE DESPITE BIOLOGICS THERAPY

J.Y. Leong1, J.G. Yeo1, P. Chen1, F. Ally1, C. Chua1, S.N. Hazirani1, P. Lu1, L.L. Lai1, L.D.T. Baith1, T. Akuchais12, D.J. Lovell4, S. Alban5, 1Translational Immunology Institute, Singapore Health Services Pte Ltd, Singapore/Duke-NUS Academic Medical Centre, 1KK Women’s and Children’s Hospital, Singapore Health Services Pte Ltd, Singapore, 2Division of Rheumatology, Cincinnati Children’s Hospital Medical Center, 3Department of Paediatrics, University of Cincinnati College of Medicine, Cincinnati, USA, 4Translational Immunology Institute, Singapore Health Services Pte Ltd, Singapore/Duke-NUS Academic Medical, Singapore, Singapore

Background: JIA patients respond well to anti-TNF-alpha biologics, with up to 80% of patients achieving clinical remission. In spite of this success, 50%–80% will relapse upon therapy withdrawal, indicating a large proportion of patients had yet to fully resolve their disease. Compounded by concerns with drug toxicities and financial burden, there is a genuine interest to find predictors for successful drug cessation and devise new avenues of therapy.

Objectives: To determine how subclinical persistence of disease occurs despite therapy, we compare JIA individuals destined to flare or remain inactive, prior to (To) and after therapy withdrawal (Tend). Previous publications have revealed that CD4 T cells play a vital role in disease pathogenesis in JIA patients. We aim to dissect the CD4 landscape (a) through CyTOF, to decipher the CD4 subsets responsible for disease persistence, (b) to unravel the pathways involved through mRNA analysis with Nanostring.

Methods: Patients treated with anti-TNF-alpha biologics were recruited with clinically active disease on treatment and initiated with therapy discontinuation. The patients designated as flare (n=24) and inactive (n=24) based on 6 JIA core set parameters. Healthy paediatric controls (n=17) with no inflammatory disease were recruited pre-operatively during day surgeries. A separate study with active JIA patients recruited pre/post treatment (n=4 pairs) with anti-TNF alpha biologics and achieving recent clinical remission.

Results: Interrogation of CD4+ T cells from CyTOF reveal the persistence of a subset of CD3+CD4+inflammatory memory CD45RA-. TNAF -PD1- CTLA4- T cells in flare patients (p<0.05) in flare (To) versus inactive (To) individuals. Intriguingly an additional subclinal subset, TNFA +IL6+, was detected (p<0.05) in flare (To) versus healthy individuals. Upon therapy withdrawal, this subclinalic subset expanded (p<0.05) in flare (Tend) individuals versus inactive (Tend). Notably we also observe a distinct early increase in CD3+CD4+CD45RA- CXCR5+ T cells in flare versus inactive (To) individuals which subsides after therapy withdrawal, indicating early T-B interaction. We noted strong but likely inadequate compensatory enrichment of CD45RA+ subset of Tregs in flare versus inactive (To/Tend) individuals. To decipher the mechanism that leads to incomplete disease resolution, we sorted CD3+CD4+CD45RA- CD45RO+T-cells from flare and inactive (To/Tend) patients, and observed striking dysregulation in several major pathways, (a) TCR activation, (b) TNFA signalling, (c) Apoptosis, (d) NF-κB signalling, (e) MAPK signalling. This dysregulation also extends to a separate cohort of active JIA patients naive to anti-TNF alpha biologics therapy and persisting till recent onset clinical remission.

Conclusions: These results highlight a strong immunological memory dysregulation in a subset of CD4 T cells in JIA patients that is predictive of clinical fate and providing new therapeutic insights.

Disclosure of Interest: None declared

DOI: 10.1136/annrheumdis-2018-eular.5194