Background: Rheumatoid arthritis (RA) is a chronic inflammatory autoimmune disease of unknown origin and complex etiology with severe detrimental effects for the patient's quality of life. While rheumatoid factors (RF) and anti-citrullinated protein antibodies (ACPA) have been extensively used for the diagnosis of RA, the mechanistic understanding of the disease pathogenesis is still in its infancy. Both seropositive and seronegative RA patients experience significant improvement in disease severity following B cell depletion. Therefore, we hypothesised that B cells have a central role in ACPA+ and ACPA- RA irrespective of their capacity to produce auto-antibodies.

Objectives: The characterisation of B and T cell populations in the peripheral blood and synovium of ACPA+, ACPA and arthralgia patients. The identification of non-antibody-mediated B cell function under the hypoxic conditions of the inflamed joint.

Methods: Peripheral blood, synovial fluid and tissue was obtained from ACPA+, ACPA and arthralgia patients. Following enzyme digestion of the tissue, several 15-colour panels were used for the flow cytometric analysis of T and B cell populations of ACPA+, ACPA and arthralgia patients compared to healthy subjects. Activation and function of healthy, sorted B cells, cultured in vitro and stimulated by CD40 and BCR mediated signals under normoxic (21% O2) and hypoxic (1% O2) conditions was examined.

Results: Pro-inflammatory cytokine production by peripheral blood CD4+ T cells is not significantly different between ACPA+, ACPA- and arthralgia patients when compared to healthy controls. However, a significant reduction in CD27+ switched memory B cells was observed between healthy subjects and ACPA+ RA patients. The aforementioned decrease in memory B cells is potentially a result of increased susceptibility to FAS induced apoptosis since healthy B cells cultured with RA patient plasma showed increased activation, CD80/CD86 and FAS expression.

In the syновial fluid and synovial tissue, CD4 T cell pro-inflammatory cytokine production was increased when compared to peripheral blood CD4 T cells. Interestingly, ACPA+ RA patient CD4+ T cells produced reduced amounts of pro-inflammatory cytokines when compared to ACPA- RA patient CD4+ T cells. Despite accumulation of switched and double negative (DN) memory B cells in the syновial fluid and tissue, compared to peripheral blood, no differences in syновial B cell subpopulation composition between ACPA+ and ACPA- RA patients were observed. Interestingly, sorted B cells from healthy subjects showed increased sensitivity to in vitro stimulation with increased expression of CD80 and CD86 when cultured under hypoxic conditions, while co-culture with RA patient syновial fibroblasts did not enhance this effect.

Conclusions: The increased capacity of ACPA+ compared to ACPA- RA patient synovial CD4+ T cells to produce pro-inflammatory cytokines, could be responsible for the more severe disease progression of ACPA+ compared to ACPA- RA. The accumulation of memory B cells in both ACPA+ and ACPA- RA, underlines a common antibody independent, contribution of B cells in synovial inflammation. While B cell activation under hypoxic conditions and increased CD80/CD86 expression is an important mediator for the emergence of auto-reactive T cells and disease progression in RA.

Disclosure of Interest: None declared

DOI: 10.1136/annrheumdis-2018-eular.4835

B CELL PHENOTYPE AND FUNCTION IN THE JUVENILE IDIOPATHIC ARTHRITIS PATIENTS EXHIBIT INCREASED EXPRESSION OF MICRORNA-142

A. Floudas1, M. Biniecka2, C. Low3, D.J. Veale4, U. Fearon4, 1 Trinity College Dublin, UCd, Dublin, Ireland

Background: Nineteen miRs differentially expressed were detected by microarray analysis, of which Let-7g, miR-20a-5p, miR-26a-5p, miR-142-3p, miR-146a-5p were validated in an independent cohort. Of these, miR-142–3 p was confirmed to be significantly upregulated (2-fold, p=0.03) in Tregs from AAV-REM patients compared to HC Tregs (n=23, n=22). To study the functional impact of miR-142–3 p overexpression, HC Tregs were transfected using either a mimic-miR-142–3 p or a scrambled (SCR)-control. After transfection, three Tregs were co-cultured with T effectors (CD4+CD25+) in a suppression assay to test their suppressive capacity. Transfection with mimic-miR-142–3 p significantly increased the miR-142–3 p levels (2.4 fold, p=0.03) and reduced the suppressive capacity compared to SCR-transduced Tregs (1.9 fold reduction, p=0.02). Moreover, miR-142–3 p levels tended to correlate to the suppressive function of Tregs (p=0.06, rho=-0.591). A database and literature search identified adenylyl cyclase 9 (AC9) as a promising target of miR-142–3 p. mRNA levels of AC9 tended to be lower in AAV-REM patients compared to HC (3.8 fold, p=0.07). In addition, CAMP

Objectives: To determine how subclinical persistence of disease occurs despite therapy, we compare JIA patients destined to flare or remain inactive, prior to (To) and after therapy withdrawal (Tend). Previous publications have revealed that CD4 T cells play a vital role in disease pathogenesis in JIA patients. We aim to dissect the CD4 landscape (a) through CyToF, to decipher the CD4 subsets responsible for disease persistence, (b) to unravel the pathways involved through miRNA analysis with Nanostring.

Methods: Patients treated with anti-TNF-alpha biologics were recruited with clinical disease on treatment and initiated with therapy discontinuation. The patients designated as flare (n=24) and inactive (n=24) based on 6 JIA core set parameters. Healthy paediatric controls (n=17) with no inflammatory disease were recruited pre-operatively during day surgeries. A separate study with active JIA patients recruited pre/post treatment (n=4 paired) with anti-TNFa biologics and achieving recent clinical remission.

Results: Analysis of CyToF with miR-142 revealed the presence of a subset of CD3+CD4+inflammatory memory CD45RA- T cells in flare (To) versus inactive (To) individuals. Intriguingly an additional subclinical subset, TNFA IL-6+, was detected (p<0.05) in flare (To) versus healthy individuals. Upon therapy withdrawal, this subclinical subset expands (p<0.05) in flare (Tend) individuals versus inactive (Tend). Notably we also observe a distinct early increase in CD3+CD4+ CD45RA- CXCR5+ T cells in flare versus inactive (To) individuals which subsides after therapy withdrawal, indicating early T-B interaction. We noted strong but likely inadequate compensatory enrichment of CD45RA+ subset of Tregs in flare versus inactive (To) individuals. To decipher the mechanism that leads to incomplete disease resolution, we sorted CD3+CD4+CD45RA-CD45RO+ T-cells from flare and inactive (To/Tend) patients, and observed strong dysregulation in several major pathways, (a) TCR activation, (b) TNFA signalling, (c) Apoptosis, (d) NF-kB signalling, (e) MAPK signalling. This dysregulation also extends to a separate cohort of active JIA patients naive to anti-TNFa biologics therapy and persisting till recent onset clinical remission.

Conclusions: These results highlight a strong immunological memory dysregulation in a subset of CD4 T cells in JIA patients that is predictive of clinical fate and providing new therapeutic insights.

Disclosure of Interest: None declared

DOI: 10.1136/annrheumdis-2018-eular.5194

INCREASED EXPRESSION OF MICRORNA-142-3P IS ASSOCIATED WITH THE FUNCTIONAL DEFECT OF REGULATORY T CELLS IN ANTI-NEUTROPHIL CYTOPLASTIC ANTI-BODY ASSOCIATED VASCULITIS

G. Dekkema1*, T. Bijn1,2, W. Abdulrah1, P. Jellema1, A. Van Der Berg1, B. J. Kroesen1, C. Stegeman1, P. Heeringa1, J.-S. Sanders1. Pathology and Medical Biology; 2Department of Internal Medicine, division of Nephrology; 3Department of Rheumatology and Clinical Immunology; 4Department of Clinical Immunology, University Medical Center Groningen, Groningen, Netherlands

Background: Circulating regulatory T cells (Tregs) in anti-neutrophil cytoplasmic antibody associated vasculitis (AAV) are frequently functionally deficient. The mechanism behind their impaired function is however unknown. Small non-coding microRNA (miR) are post-transcriptional regulators of protein synthesis and previous studies have shown that differently expressed miRs in T cells are associated with autoimmunity.

Objectives: To investigate whether the dysfunctionality of Tregs in AAV is due to altered microRNA (miR) expression.

Methods: Tregs (CD4+CD45RO+CD25+CD127-) of healthy controls (HC) and AAV patients in remission without treatment (AAV-REM) were FACS-sorted, and total RNA was isolated. Samples from 8 HCs and 8 AAV-REMs were subjected to miRNA microarray analysis. Based on relative expression and fold change, 5 differentially expressed miRs were validated in an independent cohort using qRT-PCR and a database and literature search was performed to identify potential targets.

Results: Nineteen miRs differentially expressed were detected by microarray analysis, of which Let-7g, mir-20a-5p, mir-26a-5p, mir-142-3p, mir-146a-5p were validated in an independent cohort. Of these, miR-142–3 p was confirmed to be significantly upregulated (2-fold, p=0.03) in Tregs from AAV-REM patients compared to HC Tregs (n=23, n=22). To study the functional impact of miR-142–3 p overexpression, HC Tregs were transfected using either a mimic-miR-142–3 p or a scrambled (SCR)-control. After transfection, three Tregs were co-cultured with T effectors (CD4+CD25+) in a suppression assay to test their suppressive capacity. Transfection with mimic-miR-142–3 p significantly increased the miR-142–3 p levels (2.4 fold, p=0.03) and reduced the suppressive capacity compared to SCR-transduced Tregs (1.9 fold reduction, p=0.02). Moreover, miR-142–3 p levels tended to correlate to the suppressive function of Tregs (p=0.06, rho=-0.591). A database and literature search identified adenylyl cyclase 9 (AC9) as a promising target of miR-142–3 p. mRNA levels of AC9 tended to be lower in AAV-REM patients compared to HC (3.8 fold, p=0.07). In addition, CAMP

Disclosure of Interest: None declared

DOI: 10.1136/annrheumdis-2018-eular.4835