utility of 18-FDG PET/CT to measure the disease activity by studying wall enhancement compared to the clinimetric assessment has been slightly studied.

Objectives: To explore the agreement between 18-FDG PET/CT and the clinimetric tools for the estimation of Takayasu activity in one national reference centre.

Methods: The clinical records of patients that had performed an 18-FDG PET/CT were consecutively included. The required information to fulfill the ITAS2010, ITAS.A, NIH and DR were gathered from clinical charts. The cut-off points we used are the following: SUVmax > 2.1 for 18-FDG PET/CT, and for ITAS2010 > 5 points, for ITAS.A > 4 points, for NIH >2 points and for DR >3 points. Kappa index was calculated, comparing SUVmax with all the clinimetric measures. As an exploratory exercise, ROC curves were performed. A P value less than 0.05 was considered statistically significant.

Results: Thirty six clinical records were reviewed. There was enough information to score ITAS2010 in 31 patients, ITAS.A in 28 patients, NIH and DR in 35 patients each. In our patients, moderate agreement was observed between 18-FDG PET/CT and DR score (Kappa=0.542, p=0.001). A tendency of weak agreement was observed with the NIH score (Kappa=0.215, p=0.086) and ITAS.A (kappa=0.351, p=0.063). There was no agreement with ITAS2010 (Kappa=0.107, p=0.519); Significant AUC were observed with DR (AUC=0.817, p=0.005) and NIH (AUC=0.756, p=0.025); however, this results were not obtained with ITAS2010 (AUC=0.675, p=0.124) and ITAS.A (AUC=0.697, p=0.083).

Conclusions: There was no strong agreement between 18-FDG PET/CT and any of these activity indices. On the other hand, these data suggest that the best disease activity tool in Mexican patients were DR and the NIH scores. Comparative studies in other populations are warranted.

REFERENCES:

Disclosure of Interest: None declared

AB0656 CRYOGLOBULIN EVALUATION: ANALYSIS OF INTRA-LABORATORY AND INTER-LABORATORY VARIABILITY

D. Campillii, P. Natail, D. D., B. Snnelii, G. Sandriii, C. Cerami, C. Scchillone, F. Fontanii, M.T. Maschi. 1Department of Laboratory Medicine; 2Chair and Rheumatology Unit, University of Modena and Reggio Emilia, Polyclinico di Modena; 3Chair and Rheumatology Unit, University of Modena and Reggio Emilia, Polyclinico di Modena, Modena, Italy

Background: Cryoglobulins (CRG) are immunoglobulins that precipitate in serum at temperatures below 37°C and resolubilize upon warming. The main reasons of interest of a clinical pathologist in the study of cryoglobulinemia are: 1) lack of standardisation in the preanalytical, analytical and postanalytical phases of the process (classification and reporting); 2) peculiarities of physiopathological mechanism 3) important clinical consequences. Vermeersch et al. studied these issues in 2008. To assess current practice in the detection, analysis, and reporting of cryoglobulins, a questionnaire was sent to 140 laboratories. They showed that only 38% of laboratories used standard procedures of analysis. Consequently, they concluded that standardisation was needed for cryoglobulin detection to avoid missed diagnoses and improve the comparability of results. Sargur et al. in 2010 reviewed the classification and clinical features of cryoglobulins and suggested “best practice” guidelines for laboratory detection and identification of cryoglobulin. They particularly highlighted the relevance of preanalytical and analytical phases: maintenance of the sample at a stable temperature of 37°C, especially throughout the initial steps (collection and transportation); centrifugation and separation methods; cryoprecipitate quantification; cryoprecipitate washing techniques; immunochromatization of cryoprecipitates especially through immunofluorimetric techniques (considered the “gold standard”).

Objectives: To verify and assess the variability of laboratory processes of CRG.

Methods: We checked laboratory databases of Hospital and University (Lab A and B) of Modena with long tradition in the cryoglobulin analysis (more than 6000 tests from 2002 to 2017). Concerning CRG testing, 734 patient samples were studied in both laboratories. We compared our results according to Brouet classification into subgroups: type I, II and III. Therefore, we evaluated intra-laboratory variability, compared to previous or more frequent results. Finally, we studied inter-laboratory variability based on non-concordant laboratory reports.

Results: In the following table, we have represented the comparison between labs about the same patient cohort in 734 patient samples:

<table>
<thead>
<tr>
<th></th>
<th>I type (n)</th>
<th>II type (n)</th>
<th>III type (n)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lab A</td>
<td>21</td>
<td>242</td>
<td>108</td>
</tr>
<tr>
<td>Lab B</td>
<td>42</td>
<td>270</td>
<td>108</td>
</tr>
<tr>
<td>Chi-quad</td>
<td>p=0.0016</td>
<td>p=0.0004</td>
<td></td>
</tr>
</tbody>
</table>

Conclusions: No data about variability in CRG analysis are reported in literature. National and international guidelines are not explicative enough. Furthermore, many doubts about classifications are established. Our experience is unique but limited in two laboratories. Given the variability of testing conditions used in different laboratories and the lack of test standards and reference values, we confirm the need of further investigations into standardisation of CRG testing. New guidelines are fundamental, in order to optimise all phases of CRG research (pre and post analysis) and to ensure correct diagnosis and adequate treatments of the associated diseases.

Disclosure of Interest: None declared
DOI: 10.1136/annrheumdis-2018-eular.6297

AB0657 CYCLOPHOSPHAMIDE-SPARING ROLE OF AN INTENSIFIED B-CELL DEPLETION PROTOCOL IN ANCA-ASSOCIATED VASCULITIS: A CASE-CONTROL STUDY

D. Roccato1,2, R. Fenoglio1, D. Rossi1, M. Radin1, I. Cecchi1, S. Murgia1, S. Baldovino1, E. Rubini1, S. Sciascia1, 1Center of Immunopathology and Rare Diseases, University of Turin, Torino, Italy

Background: The management of ANCA-associated-vasculitis (AAV) requires the use of immunosuppressive drugs with potential toxicity. Recently, two trials demonstrated the efficacy of Rituximab (RTXI) for the therapy of AAV.

Objectives: To evaluate the immunosuppressive-sparing effect of a RTXI-based protocol compared to the standard CYC treatment.

Methods: 26 patients with AAV and extracapillary glomerulonephritis were prospectively enrolled. Thirteen patients received an intensifed protocol of B-cell depletion therapy (IBCDT) consisting of 4-weeks infusions of 375 mg/m² RTXI followed by 2 infusions after 1 and 2 months, 3 pulses of methylprednisolone followed by prednisonone tapered to 5 mg/day in three months and 2 pulses of 10 mg/kg CYC, without further maintenance therapy. Thirteen patients treated with 2 mg/kg/day CYC followed by azathioprine as a maintenance therapy served as controls.

Results: A significant improvement (p<0.05) of B-VAS, ESR, CRP and ANCA was observed in the IBCDT-group at 3, 6 and 12 months, with decrease of mean creatinine values from 4.8±5.4 mg/dl to 2.2±3.5 mg/dl. When compared to controls, no difference was observed in terms of complete and partial response. However, the IBCDT regimen achieved a 1 month reduction of CYC cumulative dose (p=0.001).

Conclusions: In the treatment of this sample of severe AAV patients, the IBCD protocol appeared to be noninferior to CYC-based regimen. Notably, the IBCDT regimen allowed a significant reduction of CYC cumulative dose.

Disclosure of Interest: None declared

AB0658 DIFFERENT ORBITAL MANIFESTATIONS OF GRANULOMATOSIS WITH POLYANGIITIS. COMPARATIVE STUDY

D. Iremakalova1, I. Abramova2, P. Novikov2. 1Institute of Eye Diseases of Russian Academy of Medical Sciences; 2Rheumatology, I.M. Sechenov First Moscow State Medical University, Moscow, Russian Federation

Background: Ophthalmic manifestations are typical for granulomatosis with polyangiitis (GPA), and occur in 28.6%–60% of patients. In 8% of cases they lead to permanent visual loss. According to different studies orbital lesion develops in 5%–30.6% of GPA patients and is considered to be the second most prevalent ophthalmic manifestation after conjunctivitis/episcleritis.

Objectives: To study clinical features of different orbital manifestations of GPA.

Methods: 74 GPA patients with orbital involvement were studied and compared. 3 types of orbital involvement were proposed: orbital mass (45 patients),