IL6 was found to be associated with severity of periodontal disease, with higher levels being found frequently in mild periodontal disease p=0.039. The condition of RPS-mice (IL-1β: 4.0 mg/ml; IL-6: 46.0±6.6 mg/ml) was significantly associated with high leptin levels adjusted for BMI >25, has a lower probability of presenting CRP >3 mg/L OR=0.43 95% CI: 0.20 to 0.90.

Conclusion: High levels of leptin, the presence of P.gingivais and swollen joints may be relevant conditions associated with the development of RA in FDR. Leptin levels and overweight can modulate the production of acute phase proteins in this group of individuals contributing to the mechanism of systemic inflammation. The clinical implications of our findings propose regulated exercise programs, oral hygiene, and weight control in FDR

Disclosure of Interest: None declared

LPS-INDUCED PERIODONTITIS PROMOTES ARTHRITIS DEVELOPMENT IN MICE

Disclosure of Interest: None declared

OBJECTIVES: To investigate the arthritogenic effect of lipopolysaccharide (LPS) in a mouse model of periodontal disease.

METHODS: Periodontitis was induced in CD1 mice by injection of 0.01 or 0.05 μg of LPS in 5 μl of PBS every 48 hour into the vestibular gingiva of the second molar on the left maxilla. Untreated mice or injected with LPS at the tail were used as controls. Mice (n=10 per condition) were monitored daily and arthritis was estimated by conventional visual scoring method (scale 0–5) and recording the paw swelling with a calliper. 2 weeks after the 9th injection mice were sacrificed to collect blood, maxilla and paw samples. The left maxilla was analysed by microCT and the alveolar bone loss was assessed measuring the distance between the cementum-enamel junction (CEJ) and the alveolar bone crest (ABC) of each molar. Ultrasound (US) was performed to measure the ankle joint space. Periodontal and paw tissue samples were processed for histological analysis. Inflammation, vascular proliferation and bone resorption were scored (0–3) in maxilla. Inflammation, pannus formation, cartilage and bone destruction were scored (0–5) in ankle joints. CXCL1, IL-1β, IL-6 and TNF serum levels were determined by ELISA.

RESULTS: Ankle swelling and inflammation were noted after the 8th periodontal injection of 0.05 μg of LPS, picked at day 18 and continued for the next 15 days with paw swelling and score higher than those of untreated mice (at the sacrifice p<0.001). 0.01 μg of LPS did not induce paw changes. Therefore, the subsequent assessments were conducted only in mice injected with 0.05 μg of LPS. The CEJ-ABC distance was greater in the inoculated (0.29±0.08 mm) than in the control (0.17±0.05 mm) p<0.001. Histological analysis showed that LPS induced a mild vascular proliferation (score 0.8±0.42) in periodontal tissue and a substantial alveolar bone resorption (score 1.8±0.42), but not inflammation. US revealed the presence of effusion and a 1.5-fold higher joint space in the ankle of mice with periodontitis than in controls (p<0.05). Leukocyte infiltration (score 2.36±1.56) and synovial proliferation (score 2.09±1.54) were observed after histology in ankle joints of mice injected orally. The same sections had slight cartilage (score 1.32±1.21) and bone destruction (score 0.68±0.72). Animals that received LPS tail injection did not show any clinical and histological signs of arthritis. CXCL1 and TNF were higher in arthritic mice (CXCL1:2226.8±264.38 pg/ml; TNF:24.55±7.0 pg/ml) than in controls (CXCL1:445.9±92.09 pg/ml; TNF:3.32±1.04 pg/ml). Although there was no statistical difference, IL-1β and IL-6 were highest in LPS-mice (IL-1β:79.49±11.99 pg/ml; IL-6:49.05±16.00 pg/ml).

Conclusions: This study shows that experimental arthritides and periodontal disease can co-occur after LPS oral injection in mice. Our model may be useful to improve the understanding of the mechanisms underlying the link between periodontitis and arthritis.

Disclosure of Interest: None declared

THE BUILDING BLOCKS OF SYSTEMIC INFLAMMATION

Disclosure of Interest: None declared

OBJECTIVES: To review the media tors of systemic inflammation by an ifrolumab in the phase IIB MUSE STUDY IN SLE

Background: Cardiovascular disease remains one of the leading causes of death for patients with systemic lupus erythematosus (SLE), and the disease is

THURSDAY, 14 JUNE 2018

Inclusive school environment for young people with RMDs

L. van Nieuwkoop2, L. van Geene1, R. Janssen1, Stichting Chronisch Ziek en Werk, Eindhoven; 2Stichting Youth-R-Well.com, Lisse, Netherlands

Disclosure of Interest: None declared

BACKGROUND: Youth-R-Coach is a project for young people (aged 15–25) with a chronic illness. It is a project set up by the Centre for Chronically Ill and Work (CCZW) in cooperation with Youth-R-Well.com, the Dutch organisation for youth with RMDs. Youth-R-Coach is based on CCZW’s project for the certification of ‘experience expertise’.

OBJECTIVES: Youth-R-Coach focuses on the development of experts-by-experience, and making those experiences available for others to learn from. A distinctive feature is the creative aspect: the development of writing talent.

METHODS: The participants reflect individually on personal experiences with their disease, as well as their personal competencies. This process is supported by a portfolio of assignments and a mentor who also has an RMD. The participants also incorporate their personal experience with the disease in a self-written book with support of a writing coach. Even though the process is an individual one, the program starts with a group of participants. There is a kick-off meeting, a weekend training and a final group meeting. In this way, the participants get to know each other and learn from each other’s personal experiences with the disease. They stay in contact during the program and help each other with the portfolio and writing of their book. During the meetings, workshops are provided to teach them new skills, such as ‘online coaching’ and ‘presenting’.

RESULTS: Youth-R-Coach worked with a group of 7 participants who followed the program in 2016, and a group of 7 participants who started in 2017. Both groups are currently busy finalising their portfolios and books, which will be ready in May 2018.

The books are intended to make personal experiences in dealing with an RMD available for peers, for whom the books can be a source of support in dealing with the disease. The books are also interesting for a wider audience, because they provide insights into living with a chronic illness as a young person. The books are all based on different personal experiences of living with a chronic illness.

Developing expertise-by-experience and writing about their experiences has helped the participants to better cope with their disease, and has made them ambassadors. Some of them have been, or are still, involved in activities for patient organisations since the start of the program. For example, some have volunteered as a mentor for an RMD youth holiday camp, or given presentations based on personal experience with an RMD. Some participants will continue coaching their peers after finishing the program, and some continue writing about their personal experiences in a blog. How participants will continue to use their new-found skills is down to personal interests and competencies, but whatever they do, the program has given them useful tools for coping with and teaching others about the disease.

Conclusions: Fourteen participants (aged 18–27) developed their expertise-by-experience in dealing with an RMD and are now able to act as a coach for their peers. Their experiences in dealing with the disease will be published in self-written books and made available to a wide audience. All of the current participants had an RMD, but the project would also be useful for youths who have other chronic illnesses.

Acknowledgements: Youth-R-Coach was made possible with the financial support of the FNO Foundation.

Disclosure of Interest: None declared

ALTERATION OF MEDIATORS OF VASCULAR INFLAMMATION BY ANIFROLUMAB IN THE PHASE IIB MUSE STUDY IN SLE

W.J. White1, N.L. Seto2, M.P. Playford2, K.A. Casey1, M.A. Smith2, P. Carlucci2, B. Yu1, L. Wang1, G. Illei3, N. Mehta3, M.J. Kaplan2, MedImmune, Gaithersburg; 2National Institute of Arthritis and Musculoskeletal and Skin Diseases; 3National Heart, Lung, and Blood Institute, Bethesda, USA

Disclosure of Interest: None declared

BACKGROUND: Cardiovascular disease remains one of the leading causes of death for patients with systemic lupus erythematosus (SLE), and the disease is