ASSOCIATION OF SERUM PENTOSIDINE LEVELS WITH INTIMA MEDIA THICKNESS IN PATIENTS WITH RHEUMATOID ARTHRITIS

M. Kerkeni1, I. Knani1, O. Ben Omrane Siouad2, H. Bouzidi3, S. Zitoun4, S. Hammami1, M. Hammami1,1, Laboratory Biochemistry LR12ES05, Faculty of Medicine, University of Monastir, Monastir; 2Laboratory Biochemistry, CHU Tahar Star, Mahdia; 3Rheumatology department, CHU Fattouma Bourguiba, Monastir, Tunisia

Background: Advanced glycation end products (AGEs) are formed by a non-enzymatic glycation process. Previously, we showed that pentosidine, as AGEs, was related to the severity of coronary artery disease (Kerkeni et al. 2014). Recently, we showed that AGEs are involved with disease activity in rheumatoid arthritis (RA) (Knani et al. 2017, 2018). No study about the relationship between serum pentosidine levels and intima media thickness (IMT) was evaluated.

Objectives: We aim to study the association of serum pentosidine levels with IMT in RA patients.

Methods: Our study included 30 control subjects and 40 patients with RA. The carotid IMT was measured using ultrasonography and serum pentosidine levels were determined by ELISA kit.

Results: Serum pentosidine levels were increased in RA patients vs control subjects (p<0.001) and were increased with disease activity score (DAS28) (p<0.001). IMT was increased with disease activity in RA patients (p<0.01) and was positively associated with serum-pentosidine levels (p<0.001).

Conclusions: Serum pentosidine levels were increased with DAS28 and were associated with carotid IMT.

REFERENCES:

Disclosure of Interest: None declared

THE MULTI-BIOMARKER DISEASE ACTIVITY SCORE TRACKS RESPONSE TO RITUXIMAB TREATMENT IN RHEUMATOID ARTHRITIS PATIENTS

N.M.T. Roodenrijn1, M.J.H. de Haar2, G. Wheeler3, M. Elshahaly2, J. Tekstra4, Y.K. O. Teng5, C.C. Hwang6, X. Liu7, E.H. Sasso8, J.M. van Laar1,1, Department of Rheumatology and Clinical Immunology, University Medical Center Utrecht, Utrecht, Netherlands; 2Department of Rheumatology, The James Cook Hospital, Middlesbrough, UK; 3Department of Rheumatology and Rehabilitation, Suez Canal University, Ismailia, Egypt; 4Department of Nephrology, Leiden University Medical Center, Leiden, Netherlands; 5Crescendo Bioscience, San Francisco, CA, USA

Background: A multi-biomarker disease activity (MBDA) score was developed to objectively measure disease activity for patients with rheumatoid arthritis (RA).1 The MBDA score is calculated by an algorithm using concentrations of 12 serum biomarkers. The MBDA score has been shown to track response to treatment with several DMARDs.2–4

Objectives: To assess the ability of the MBDA score to track response to rituximab treatment in RA patients.

Methods: Data were used from 3 cohorts (1 in the United Kingdom, 2 in the Netherlands) of RA patients treated with rituximab 1000 mg and methylprednisolone 100 mg at days 1 and 15. The MBDA score was assessed in serum samples at baseline (BL, n=57) and at 6 months (n=46). Wilcoxon signed-rank test was used to statistically compare the medians at BL and 6 months. Spearman’s rank correlation (ρ) was used to analyse relationships between BL and 6 month values and change (Δ) from BL to 6 months for MBDA score vs. the following endpoints: DAS28-ESR, DAS28-hsCRP, ESR, hsCRP and Health Assessment Questionnaire (HAQ). Logistic regression analysis with adjustment for age, sex, smoking, ACPA and RF was used to assess the association between MBDA score and non-response, using EULAR response categories at Month 6. p<0.05 was considered statistically significant.

Results: At baseline the median MBDA score and DAS28-ESR were 54.5 (range 15.0–84.0) and 6.3 (range 2.5–8.4), respectively. The improvement in both scores after 6 months was statistically significant (p=0.003 and p<0.0001, respectively). MBDA score correlated with DAS28-ESR, DAS28-hsCRP, ESR and hsCRP at BL and Month 6 (table 1). MBDA score from BL to Month 6 correlated with changes in these measures, except for the correlation with DAS28-hsCRP (ρ=0.419, p=0.053). Spearman’s correlation for MBDA score vs. DAS28-ESR was ρ=0.548, p<0.0001 (table 1). MBDA score also correlated with EULAR non-response (n=39), with adjusted OR=1.115 (95% CI=1.017–1.223, p=0.015), which corresponds to an OR of 2.97 for every 10-unit change in MBDA score. Correlations were not observed between MBDA scores or the corresponding HAQ measurements (table 1).

Abstract AB0275 – Table 1. Correlations (Spearman’s ρ) between the MBDA score and clinical or biomarker endpoints based on measurements made at baseline (BL) or 6 months (6M), and of change (Δ) from BL to 6 months.

<table>
<thead>
<tr>
<th>Endpoint</th>
<th>Timepoint or period for comparison with MBDA score</th>
<th>Available samples (n)</th>
<th>Spearman’s ρ</th>
<th>p-value</th>
</tr>
</thead>
<tbody>
<tr>
<td>DAS28-ESR</td>
<td>BL: MBDA score and endpoint at baseline; 6M: MBDA score and endpoint at Month 6; Δ: changes in MBDA score and endpoint, both from baseline to Month 6; DAS28: disease activity score using 28 joints; ESR: erythrocyte sedimentation rate; HAQ: Health Assessment Questionnaire; hsCRP: high-sensitivity C-reactive protein; MBDA: multi-biomarker disease activity.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ESR</td>
<td>BL: MBDA score and endpoint at baseline; 6M: MBDA score and endpoint at Month 6; Δ: changes in MBDA score and endpoint, both from baseline to Month 6; DAS28: disease activity score using 28 joints; ESR: erythrocyte sedimentation rate; HAQ: Health Assessment Questionnaire; hsCRP: high-sensitivity C-reactive protein; MBDA: multi-biomarker disease activity.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>DAS28-hsCRP*</td>
<td>BL: MBDA score and endpoint at baseline; 6M: MBDA score and endpoint at Month 6; Δ: changes in MBDA score and endpoint, both from baseline to Month 6; DAS28: disease activity score using 28 joints; ESR: erythrocyte sedimentation rate; HAQ: Health Assessment Questionnaire; hsCRP: high-sensitivity C-reactive protein; MBDA: multi-biomarker disease activity.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>hsCRP*</td>
<td>BL: MBDA score and endpoint at baseline; 6M: MBDA score and endpoint at Month 6; Δ: changes in MBDA score and endpoint, both from baseline to Month 6; DAS28: disease activity score using 28 joints; ESR: erythrocyte sedimentation rate; HAQ: Health Assessment Questionnaire; hsCRP: high-sensitivity C-reactive protein; MBDA: multi-biomarker disease activity.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>HAQ</td>
<td>BL: MBDA score and endpoint at baseline; 6M: MBDA score and endpoint at Month 6; Δ: changes in MBDA score and endpoint, both from baseline to Month 6; DAS28: disease activity score using 28 joints; ESR: erythrocyte sedimentation rate; HAQ: Health Assessment Questionnaire; hsCRP: high-sensitivity C-reactive protein; MBDA: multi-biomarker disease activity.</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Disclosures of Interest: None declared

REFERENCES:

Disclosures of Interest: N. Roodenrijn: None declared, M. de Haar: None declared, G. Wheeler: None declared, M. Elshahaly: None declared, J. Tekstra: None declared, Y. Teng: None declared, C. Hwang Employee of: Crescendo Bioscience, E. Sasso Shareholder of: Myriad Genetics, Employee of: Crescendo Bioscience, E. Sasso Shareholder of: Crescendo Bioscience, J. van Laar Grant/Research support from: Arthrogen, MSD, Pfizer, Eli Lilly, BMS, Astra Zeneca, Roche-Genentech