ACTIVATED PLATELETS ARE INCREASED IN CIRCULATION OF PATIENTS WITH SYSTEMIC SCLEROSIS AND ASSOCIATED WITH CLINICAL CHARACTERISTICS

H. Yasuoka1, K. Sakata1, K. Yoshimoto1, K. Yamaoka1, M. Kuwano1, T. Takeuchi1
1Keio University School of Medicine, 2Nippon Medical School Graduate School of Medicine, Tokyo, Japan

Background: Systemic sclerosis (SSc) is a systemic connective tissue disease characterised by excessive fibrosis, microvascular injury and autoantibody production, but mechanisms of disease process are still under investigation. Recent studies focused on the role of circulating blood cells in the pathogenesis, especially lymphocytes 2,3) or monocytes 4,5), however other cellular components are not well-examined. Platelets play a significant role in hemostasis physiologically. However, recent studies have revealed that platelets contain various kinds of humoral factors such as cytokines, chemokines and growth factors and can distribute systemically through circulation and contribute to the disease process through activation and release of these factors 6).

Objectives: To elucidate the role of platelets in the pathogenesis of SSc, activation status of circulating platelets in patients with SSc and association with clinical characteristics were examined.

Methods: Twenty-one patients with SSc who fulfilled 2013 ACR/EULAR classification criteria and 16 healthy controls were involved. Platelets or microparticles (MPs) were defined as vesicles in platelet-rich plasma which is more or less than 1 µm in diameter by forward and side scatter, respectively, and positive staining with anti-CD41 antibody using flow cytometry. Activation status of platelets was examined by the expression of activation markers on platelets such as P-selectin (CD62P) or activated glycoprotein IIb/IIIa (PAC1). Production of microparticles (MPs) is defined as ratio of proportion of MP to that of platelets. Release reaction of platelets was evaluated by release of platelet factor 4 (PF4) in culture supernatant of coculture with skin fibroblasts using enzyme-linked immunosorbent assay (ELISA). Association or correlation between proportion of activated platelets and clinical characteristics or parameters of patients with scleroderma was also examined.

Results: As for the characteristics of 21 patients with SSc, male to female ratio was 3:18, proportion of diffuse cutaneous SSc was 24%, mean age was 63±13 years, and mean disease duration was 16±13 years. In SSc, both proportion of CD62P+ or PAC1+ activated platelets (p<0.05, p<0.05, respectively) and production of MP were higher (p<0.05) compared to those in healthy controls. Of these, proportion of CD62P+ platelets and MP production were correlated each other (r=0.88, p<0.05). Also, release reaction of platelet was upregulated in platelets from patient with SSc compared to healthy controls (p<0.05). When activation status of platelets was compared to clinical parameters, both proportion of CD62P+ activated platelets and MP production were higher (p<0.05) compared to those in healthy controls. Of these, proportion of CD62P+ platelets and MP production were correlated each other (r=0.88, p<0.05). Also, release reaction of platelet was upregulated in platelets from patient with SSc compared to healthy controls (p<0.05).

Conclusions: In SSc, proportion of activated platelets were higher and associated with skin sclerosis, suggesting the involvement in the pathogenesis of SSc.

REFERENCES:

Disclosure of Interest: None declared

AB0190 IMPAIRED ACTIVATION OF ATAXIA-TELANGIECTASIA MUTATED PROTEIN KINASE IN IMMUNE CELLS IS ASSOCIATED WITH CLINICAL FEATURES IN PATIENTS WITH SYSTEMIC SCLEROSIS

K. Sakata1, H. Yasuoka1, K. Yoshimoto1,2, K. Yamaoka1, T. Takeuchi1
1Department of Internal Medicine, Division of Rheumatology, Keio University School of Medicine, 2Clinical and Translational Research Center, Keio University Hospital, Tokyo, Japan

Background: Ataxia-telangiectasia mutated (AT) is a protein kinase associated with ataxia-telangiectasia (AT), which is an autosomal recessive disorder due to defective functional activity of AT. Telangiectasia, seen in AT, is also well known as one of the major characteristics of systemic sclerosis (SSc). AT plays an important role not only in DNA damage repairing system, but also in the process of regulation of oxidative stress. Moreover, it has been reported that oxidative stress may contribute to disease process of SSc. Based on these background, we hypothesised that AT may play a substantial role in the pathogenesis of SSc. However, the possible association between AT activity and SSc development is not fully understood.

Objectives: To clarify the role of AT in the pathogenesis of SSc, we demonstrated the expression and activation level of AT in circulating immune cells and analysed the association with clinical characteristics of the patients.

Methods: Whole blood samples were collected from twenty-four patients with SSc and 12 healthy controls (HC). Expression levels of total AT and active phosphorylated AT (pAT) were examined in each immune cell subset (neutrophil, monocyte, T cell, B cell and NK cell) by mean fluorescence intensity (MFI) using flow cytometer. Each MFI level of AT and pAT was compared between patients with SSc and HC, and was analysed the correlation with clinical characteristics of SSc patients, retrospectively collected from patients’ records.

Results: The expression level of pAT was significantly lower in monocytes, neutrophils, and T cells in SSc as compared with 100±128 vs 2386±181, p<0.03; 10265±861 vs 16087±1218, p=0.04; 1526±73 vs 1675±103, p<0.05, respectively), whereas no significant difference in total AT level was observed in each cell subset between two groups. Notably, the expression levels of pAT in monocytes of the patients with interstitial lung disease (ILD) was lower than that of the patients without ILD (185±136 vs 199±96, p<0.05). Furthermore, there was a tendency of correlation between pAT level in monocyte and parameters of pulmonary function test, such as forced vital capacity (FVC) and diffusion capacity (DLCO), or correlation between pAT expression level in other cell subsets and clinical parameters of the patients, such as SSc subtype, SSc-specific autoantibodies, presence of pulmonary arterial hypertension, gastrointestinal involvement, digital tip ulcer, pitting scar and modified Rodnan skin score were observed.

Conclusions: In SSc, phosphorylated level of AT in monocytes, neutrophils, and T cells was significantly lower than that of HC. Importantly, we found that AT activation was impaired in monocyte of the SSc patients with ILD. These results