through endosomal TLR inhibition effectively blocks IFN-α, is standard of care. However, few patients experience complete remission.

Objectives: We asked whether an IL-1 receptor associated kinase 4 (IRAK-4) inhibitor I92 (ND-2158, Nimbus Discovery), acting downstream of TLR 7/9, affects RNA-IC-induced cytokine production compared to hydroxychloroquine (HCQ).

Methods: Plasmacytoid dendritic cells (pDCs) and natural killer (NK) cells were isolated from peripheral blood mononuclear cells (PBMCs) of healthy individuals, PBMCs from 15 SLE patients were depleted of monocytes. Cells were stimulated with RNA-IC containing IgG from SLE patients and U1-rNP particles, in the presence or absence of I92 or HCQ. Cytokines were measured by immunoassays or flow cytometry. RNA-sequencing was performed on RNA-IC stimulated pDCs from healthy individuals and the effects of I92 and HCQ was assessed.

Results: RNA-IC induced IFN-α, TNF-α, IL-6, IL-8, IFN-γ, MIP-1α and MIP-1β production in pDC and NK cell co-cultures. I92 reduced the pDC and NK cell derived cytokine production by 74.95%, HCQ interfered with cytokine production in pDCs, but not in NK cells. In monocyte-depleted SLE PBMCs I92 blocked TNF-α, IFN-γ, MIP-1α and MIP-1β production more efficiently than HCQ. IL-8 production was high in monocyte depleted PBMC from SLE patients, and not blocked by neither drug, despite significant inhibition of IL-8 in pDC-NK co-cultures from healthy individuals. Following RNA-IC activation of pDCs, 975 differentially expressed genes were observed (FDR<0.05), many connected to cytokine pathways, cell regulation and apoptosis. The IRAK4 inhibitor significantly changed more RNA-IC-induced genes than HCQ (492 vs. 65 genes). Several top upregulated genes were reversed by both I92 and HCQ, including IFNα2, IFI122-3, OASL, CXCL10, CD274, TNFSF10, APOL6. Genes such as DKK4, LAD1 and EAF2 were significantly more downregulated by I92 than by HCQ.

Conclusions: Whereas both HCQ and the IRAK4 inhibitor block important pro-inflammatory cytokines, the IRAK4 I92 exhibits a broader inhibitory effect than HCQ on pathways triggered by RNA-IC, which suggests that IRAK4 inhibition could be a future therapeutic option in SLE and possibly other systemic autoimmune diseases characterized by the presence of ICs containing nucleic acid.


AB0161 INTERLEUKIN-37: A THERAPEUTIC FOR LUPUS Nephritis IN MRL-FASLPR MICE

L. Ding1, X. Hong1, Z. Huang2, D. Liu1. 1Department of Rheumatology and Immunology, Shenzhen People’s Hospital, the Second Clinical Medical College of Jinan University; 2Department of Immunology and Microbiology, Biological Therapy Institute, Shenzhen University School of Medicine, Shenzhen, China

Background: Systemic lupus erythematosus (SLE) is a serious and noticed autoimmune disease, and lupus nephritis (LN) as one of its major complications without effective treatment. IL-37 has been identified as a natural inhibitor of innate immunity. Although increasing evidence shown that serum IL-37 correlated with SLEDAI and nephritis activity, however, it is still unclear that the therapeutic effect of IL-37 on lupus mice or LN needs further study.

Objectives: This study aims to determine the inhibitory effect of IL-37 in lupus mice and lupus nephritis in vivo, and to expose the IL-37 related mechanisms of cell and molecules that inhibits the inflammation in lupus nephritis.

Methods: MRL-Fas mouse with mild and advanced disease were treated with lentiviral vector pLVX-IL-37b. The protein levels of IL-37 in serum and tissue, IL-17, IL-6, IL-10 and TGF-βl mRNA expression of these cytokines in PBMCs was detected by RT-PCR, and the frequency of Th17 and Treg cells in splenocyte were determined by FACS.

Results: Our results show that IL-37 is highly effective in prolonging survival, alleviating the pathologic characteristics of lupus nephritis (LN) in MRL-Fas mouse by reducing the autoimmune complex deposition such as IgM, IgG and C3, decreasing the production of inflammatory cytokines such as IL-17, IL-6 and promoting the anti-inflammatory cytokines IL-10 and TGF-3. We also found that IL-37 protect lupus mice from LN associated with increasing the frequency of Treg cells and decreasing the frequency of Th17 cells.

Conclusions: These results suggested that IL-37 can have the protective action of IL-37 in LN, and strengthen the support for IL-37 as a new target for therapy of SLE.


AB0162 KLRF1 EXPRESSION IS REDUCED ON NK CELLS FROM SLE PATIENTS AND INVERSELY CORRELATES WITH DISEASE ACTIVITY AND CLINICAL FEATURES

L. Novelli, C. Barbati, F. Ceccarelli, M. Vomero, C. Perricone, F. Morello, C. Garufi, F.R. Spinelli, C. Alessandri, G. Valesini, F. Conti. Sapienza University of Rome, Rome, Italy

Background: Systemic Lupus Erythematosus (SLE) is a multifactorial autoimmune disease, with different immunological alterations and clinical phenotypes. Natural killer (NK) cells participate in the regulation of several immune responses but their function in SLE is not well understood. KLRF1 (killer cell lectin like receptor G1) is a trans-membrane protein expressed in humans especially on NK cells, working as an inhibitory receptor of their cytotoxic activity. Thus, KLRF1-mediated signal might have a role in preventing autoimmunity, increasing the activation threshold of NK cells. KLRF1 gene also emerged as a disease susceptibility gene for SLE in four different ethnic groups.

Objectives: The aim of this study was to characterize KLRF1 expression on NK cells (both CD56dim and CD56bright) in SLE patients compared to normal controls. Transfection of normal BMSCs with let-7 inhibitor caused significant downregulation of KLRF1 compared to let-7-negative controls, while transfection with let-7-mimics led to an opposite effect.

Results: Compared to normal controls, the expression of let-7 was markedly down-regulated in BMSCs from SLE patients by RT-PCR, and the synthesis of IL-6 mRNA and protein levels were significantly higher in BMSCs from SLE patients. Compared to let-7-negative controls, transfection of BMSCs with let-7-mimics markedly lowered synthesis of TGF-β1 mRNA, and let-7-inhibitor led to an opposite effect. The mean value of Treg/Th17 was significantly decreased in PBMCs from SLE patients compared to normal controls. Transfection of normal BMSCs with let-7 inhibitor caused significant downregulation of Treg/Th17 compared to let-7-negative controls, while transfection with let-7-mimics led to an opposite effect.

Conclusions: SLE patients exist an imbalance between Treg and Th17 cells, which might be associated with up-regulation of IL-6 secretion of BMSCs by loss of let-7.