Objectives: to evaluate (i) whether quantitative and qualitative differences in the activation of the IFN signature can be found in RA patients depending on the clinical stage and (ii) if these differences may be linked to a clinical relevance of the IFN signature.

Methods: expression of IFI44, IFI44L1, IFI6, and MX1 was determined in peripheral blood in 98 RA patients and 28 controls. RA patients were classified into groups according to their clinical stage and treatments received: very early RA (VERA, recruited at onset and not exposed to any treatment), bDMARD-naïve (patients on csDMARD treatment) and bDMARD (patients on biological treatment, all anti-TNF-α agents). An additional group of 13 RA patients candidate for TNF-α-blockade was also recruited and samples were taken before and after anti-TNF-α treatment. The associations among IRGs were evaluated by network and principal component analyses.

Results: all IRGs was increased in RA, although differences were noted among them. The IFN score was increased in all RA groups (VERA, bDMARD-naïve and bDMARD), but differences in their degree of activation and in the relationships among IRGs were observed. VERA patients exhibited a lower activation of the IFN signature and a distinct picture of the structure of the IRG network (figure 1) compared to both their established disease-counterparts and the HC group. The IFN score correlated the accumulated DAS28 over one year (r=0.593, p=0.025) and it was found to be a predictor of a good clinical outcome (EULAR good clinical activity) at baseline. Although no absolute changes in the IFN score were found, TNF-α-blockade shifted the associations among IRGs. These differences mirrored those found when comparing bDMARD-naïve and bDMARD groups.

Conclusions: a certain heterogeneity within the IFN signature can be recognised in RA, depending on the clinical stage. The structure of the IFN signature may be a potential explanation for the controversy in this field and may represent a limitation for its use as a clinical biomarker.

Disclosure of Interest: None declared


Abstract AB0041 – Figure 1

Objectives: to evaluate the effect of essential oil extracted from Chamaecyparis obtusa on the development of collagen-induced arthritis (CIA), a well-characterised preclinical model of human RA.

Methods: DBA/1J mice were injected intraarticularly with EOCO dissolved in dimethyl sulfoxide (DMSO) 3 times a week for 5 weeks after type II collagen (CII) immunisation. Arthritis severity was evaluated by clinical and histological parameters. Serum anti-CII antibody levels were assayed by ELISA. Linterleukin-17 (IL-17) expressions in the joints were determined by immunohistochimistry. Effect of EOCO on Th17 cells and natural killer (NK) cells was analysed using flow cytometry.

Results: EOCO markedly reduced the clinical and histological severity of CIA. Serum anti-CII antibody levels and the expression of IL-17 in the joints were significantly lower in mice treated with EOCO than those treated with DMSO alone. EOCO inhibited the differentiation of Th17 cells in total splenocytes, not in isolated CD4+ T cells, from mice. EOCO increased the production of granzyme B and perforin in NK cells.

Conclusions: Our data demonstrate a protective effect of EOCO on the development of CIA through the inhibition of Th17 cell differentiation. This effect may be related with NK cell activity enhanced by EOCO.

REFERENCES:

Acknowledgements: This study was carried out with the support of ‘Forest Science and Technology Projects (Project No. S111114L020100)’ provided by Korea Forest Service.

Disclosure of Interest: None declared


AB0043

THE ELASTICITY PROPERTIES OF PROBIOTIC BACTERIA WALL ASSOCIATED WITH BENEFICIAL MODULATORY ACTIVITY ON INNATE IMMUNITY OF THE HOST


Background: Probiotics have tremendous potential to develop healthy diets and integrated approach for immunity-related diseases treatment and prevention,1,2 are effective actors in distant sites3 with strong potential for applications in rheumatology. The cell wall of probiotic bacteria plays an essential role in many aspects of modulating beneficial immune response,4 Its elasticity properties associated with probiotic beneficial effect3 and can warrant to stratify strains on their modulatory activity on innate immunity to justify individualised and personalised approach for nutrition and prevention.

Objectives: The aim was to study the effect of lactic acid bacteria (LAB) and bifidobacteria strains on phagocytic system cells functional activity and immunoregulatory cytokines synthesis in vitro in regards to the bacteria surface properties as cell walls elasticity using atomic force microscopy (AFM).

Methods: We conducted experimental studies on BALB/c line mice 18–20 g weight using lyophilized strains of LAB – Lactobacillus acidophilus IMV B-7279, L. casei IMV B-7280, L. delbrueckii subsp. bulgaricus IMV B-7281 and bifidobacteria – Bifidobacterium animalis VKL, B. animalis VKB. We cultivated the macrophages received from the peritoneal cavity of mice by common method individually with the strains of LAB and bifidobacteria. We estimated the impact of LAB and bifidobacteria strains on the functional activity of peritoneal cavity macrophages using the conventional methods of study oxygen-dependent bactericidal activity, nitric oxide production, their effect on the immunoregulatory cytokines. We used AFM scanning to estimate bacteria cell walls elasticity.

Results: All strains demonstrated a stimulating effect on the functional activity of macrophages and ability to produce NO/N02 in vitro. Lactobacilli strains increased the production of IL-12 and IFN-γ in vitro. The AFM demonstrated different degree of the cell walls elasticity in various strains of LAB and bifidobacteria. Among lactobacilli the most elastic cell wall was found in L. delbrueckii subsp. bulgaricus IMV B-7281, and among bifidobacteria – in B. animalis VKL. This induced the considerable activation of the phagocytes. Probiotic strains survival in

AB0042

ESSENTIAL OIL EXTRACTED FROM CHAMAECYPARIS OBTUSA ATTENUATES THE SEVERITY OF COLLAGEN-INDUCED ARTHRITIS

J. Lee1, Y. Park2, C.-H. Yoor2. 1Division of Rheumatology, Department of Internal Medicine, College of Medicine, The Catholic University of Korea, Uijeongbu Saint Mary’s Hospital. 2Division of Rheumatology, Department of Internal Medicine, College of Medicine, The Catholic University of Korea, Seoul, Korea., Seoul, Korea, Republic of Ireland

Background: Chamaecyparis obtusa (C. obtusa) is a tropical tree species found in Japan and the southern region of South Korea. Although the biological activities of essential oil extracted from C. obtusa (EOCO) are not yet fully understood, essential oil has been shown to have antibacterial activities and anti-inflammatory effects.