tested interobserver agreement for several joints. The knee and the wrist were the most reliable sites for assessing CPPD.

Objectives: To assess whether the high level of inter-observer agreement of US for the detection of Calcium Pyrophosphate Deposition Disease (CPPD) in the triangular fibrocartilage complex (TFCC) of the wrist found by the experienced rheumatologists of the OMERACT group could be reproduced in real life

Methods: The OMERACT US criteria for identification of CPPD were utilised for this exercise on pre-recorded static images using a dichotomous score among several radiologists (n=2) and rheumatologists (n=5) with varying level of experience in musculoskeletal ultrasonography (range: 2–10 years). Firstly, the same 15 US images of the wrist that had been evaluated by the OMERACT panel were sent for evaluation to the local participants in order to calculate the inter-observer agreement. Secondly, 22 additional wrist US images extracted from locally performed examinations, in patients with a high suspicion of CPPD arthritis were evaluated. These local US examinations were performed in real life conditions, by different operators, on different machines and without prior standardisation of the procedure. For comparison, interobserver of wrist radiographs was also evaluated for all local patients.

Results: The mean overall agreement and kappa values on the OMERACT panel US images were 0.89 and 0.78 respectively. These values are similar to those obtained previously by the OMERACT panel during the web exercise with the same images (0.80 and 0.68 respectively). The interobserver agreement was lower with the local US images (0.70 and 0.49 respectively), probably due primarily to the absence of strict standardisation of US procedure and inferior image quality. For comparison, the performance on the local radiographs was similar (0.70 and 0.47 respectively).

Conclusions: Our results confirm that the new OMERACT US definitions for assessing wrist CPPD are reliable when applied to pre-recorded static images. Scanning technique and standardisation of the procedure appear to be an important aspect with regards to the assessment of CPP deposition at the wrist.

REFERENCES:

Disclosure of Interest: None declared

SAT0640 WHOLE BODY-MRI IN AXIAL SPONDYLOARTHRITIS (AXSPA): DIFFUSION WEIGHTED IMAGING (DWI) OUTPERFORMS THE STIR SEQUENCE

A. Nzeussen; Toukou1; N. Vander Marèn2; L. Colletta3; N. Michouk4; P. Triqueneaux2; M.S. Stoenou1; H. Foussial1; J. Malghem5; F.E. Lecouvèz2.

1Rheumatology, 2Radiology, Cliniques Universitaires St-luc; 3Eotc, Eotc Headquarters, Brussels, Belgium

Background: None

Objectives: To compare the diagnostic value of DWI and STIR sequences as part of WB-MRI studies in AxSpA patients.

Methods: 20 consecutive patients (P) with confirmed diagnosis of active AxSpA and 20 controls (C) referred for metastatic cancer screening were investigated with whole body WB-MRI protocols including DWI and STIR images. Two independent observers recorded the presence of "lesions" (high signal intensity foci on STIR and high b-value DWI images) in 17 anatomical areas; making a 17-point area score) and a calculated 40-point "lesion score". Both were tested for correlation with clinical and biological parameters.

Results: In P, the 'lesion score' was significantly higher with DWI than with STIR (P<0.0025). The most experienced observer had higher DWI lesion scores, suggesting a learning effect. The lesion score and some anatomic areas could discriminate P from C. For this purpose, DWI had a higher AUC than STIR (AUC=99.9, CI: 99.5–1.00 vs AUC=95.8, CI: 90.9–1.00). For a trained MRI observer using DWI, a lesion score threshold of ≥4 had 100% sensitivity and 95% specificity. With STIR, a threshold of ≥3 had 85% sensitivity and 90% specificity. The combination of H and E with CD3/CD20 and CD21 staining should be recommended as it is reliable, feasible, able to overcome the bias of operator experience and easily transferrable into routine practice.

Disclosure of Interest: None declared

SAT0641 PERFORMANCE AND AGREEMENT OF DIFFERENT OPERATORS AND HISTOLOGICAL TECHNIQUES FOR THE ASSESSMENT OF GERMINAL CENTRES IN MINOR SALIVARY GLANDS IN PRIMARY SJÖGREN’S SYNDROME

A. Alunno1; P. Cipriani3; G. Coletti2; B. Bigiema4; M. Manetti5; P. Di Benedetto1; D. Bistoni1; G. Cicilioni1; V. Lissioli5; P. Ruscitti1; R. Geri1; R. Giacomelli7; F. Carabbi3; 1Department of Medicine, Rheumatology Unit, University of Perugia, Perugia; 2Department of Biotechnological and Applied Clinical Science, Rheumatology Unit, School of Medicine, University of L’Aquila; 3Biomedical Department, Pathology Unit, ASL1 Avezzano-Sulmona-L’Aquila; L’Aquila; 4Department of Medicine, Institute of Haematology, University of Perugia, Perugia; 5Department of Experimental and Clinical Medicine, Section of Anatomy and Histology, University of Florence, Florence; 6Department of Medicine, ASL1 Avezzano-Sulmona-L’Aquila, L’Aquila, Italy

Background: A standardisation of minor salivary gland (MSG) histopathology in primary Sjögren’s syndrome (pSS) has been recently proposed by the EULAR study group on Sjögren’s syndrome. Although there is strong agreement that germinal centres (GCs) should be routinely identified, due to their prognostic value, a consensus regarding the best protocol is still lacking.

Objectives: Aim of this study was to compare the performance of different histological techniques and operators with variable experience in MSG histopathology to identify GCs in pSS MSGs.

Methods: MSG biopsies from 50 pSS patients were studied. Three blinded operators (expert rheumatologist, expert pathologist and rheumatologist with scarce experience on MSG histopathology) scored one slide stained with haematoxilin and eosin (H and E). Consecutive slides were processed by immunofluorescence and immunohistochemistry to assess CD3/CD20, CD21 and Bcl-6 expression.

Results: Overall, the prevalence of GC in MSG specimens (namely the presence of at least one focus positive for at least one operator or histological technique) ranged between 26% and 52%. By separate assessment of 225 foci, the best agreement was between H and E-stained sections evaluated by the expert rheumatologist and CD3/CD20 segregation (Cohen’s kappa=0.72). In the foci with CD21 positivity, the agreement with the expert rheumatologist further increased (Cohen’s kappa=0.75). Among the 3 methods employed, the best agreement was observed between B/T-cell segregation and the positivity for CD21 staining (0.84). The absence of Bcl-6 in a focus does not necessarily rule out the presence of the GC detected with other stainings.

Conclusions: GC assessment on H and E-stained sections should be performed with caution, as it is dependent on the background and expertise of the operator. The combination of H and E with CD3/CD20 and CD21 staining should be recommended as it is reliable, feasible, able to overcome the bias of operator experience and easily transferrable into routine practice.

Disclosure of Interest: None declared

SAT0642 A CAD SYSTEM IN HEP-2 IIF READING: A MULTICENTRE STUDY

A. Ripon1; M. Infantino4; M. Merone4; G. Iannello5; C. Sansone6; A. Tincani7; I. Cavazzana8; M. Manfredi2; A. Radice8; P. Sodà4; A. Aletta4.

1Immuno-rheumatology, University Campus Biomedico-Rome, Rome; 2Immunology and Allergy laboratory, S. Giovanni di Dio Hospital, Florence; 3Unit of Computer Systems and Bioinformatics, University Campus Biomedico-Rome, Rome; 4Dipartimento di Ingegneria Elettrica e delle Tecnologie dell’Informazione, Università degli Studi di Napoli Federico II, Napoli; 5Rheumatology Unit, AST Spedali Civili, Brescia; 6Microbiology and Virology Department, San Carlo Borromeo Hospital, Milan, Italy

Background: The indirect immunofluorescence (IIF) on HEP-2 cells is the recommended technique for anti-nuclear antibodies (ANA) detection. Automation of IIF image reading can provide a reliable basis for cost-effective serological diagnostics. Computer-aided diagnosis (CAD) tools based on digital imaging reading can help us to overcome the reader subjectivity. In a recent work we assessed the inter-observer variability using digital images showing the 74.1% of agreement. It improved using “ground truth” as gold standard.

Objectives: To compare the performance of different histological techniques and operators with variable experience in MSG histopathology to identify GCs in pSS MSGs.

Methods: MSG biopsies from 50 pSS patients were studied. Three blinded operators (expert rheumatologist, expert pathologist and rheumatologist with scarce experience on MSG histopathology) scored one slide stained with haematoxilin and eosin (H and E). Consecutive slides were processed by immunofluorescence and immunohistochemistry to assess CD3/CD20, CD21 and Bcl-6 expression.

Results: Overall, the prevalence of GC in MSG specimens (namely the presence of at least one focus positive for at least one operator or histological technique) ranged between 26% and 52%. By separate assessment of 225 foci, the best agreement was between H and E-stained sections evaluated by the expert rheumatologist and CD3/CD20 segregation (Cohen’s kappa=0.72). In the foci with CD21 positivity, the agreement with the expert rheumatologist further increased (Cohen’s kappa=0.75). Among the 3 methods employed, the best agreement was observed between B/T-cell segregation and the positivity for CD21 staining (0.84). The absence of Bcl-6 in a focus does not necessarily rule out the presence of the GC detected with other stainings.

Conclusions: GC assessment on H and E-stained sections should be performed with caution, as it is dependent on the background and expertise of the operator. The combination of H and E with CD3/CD20 and CD21 staining should be recommended as it is reliable, feasible, able to overcome the bias of operator experience and easily transferrable into routine practice.

Disclosure of Interest: None declared