SENSITISATION AND PAIN SEVERITY IN PATIENTS WITH HAND OSTEOARTHRITIS

P. Steen PetterSEN, T. Neogi3, K. Magnusson1, H.B. Hammer1, T. Uhlig1, T. K. Kvien4, I.K. Haugen1. 1Dept. of Rheumatology, Diakonhjemmet Hospital, Oslo, Norway; 2Clinical Epidemiology Research and Training Unit, Boston University School of Medicine, Boston, USA

Background: Sensitisation, a hyperexcitability of nociceptive pathways, contributes to pain severity in patients with knee osteoarthritis, but this association has not yet been examined in patients with hand osteoarthritis (HOA).

Objectives: This study explored the occurrence of central and peripheral sensitisation in patients with HOA and the relationship between sensitisation and hand pain severity.

Methods: Three hundred subjects (89% women) with clinical and/or ultrasound-verified HOA were included in this cross-sectional study. Hand pain severity was assessed with the numeric rating scale (0–10 NRS) of hand pain during the last 24 hours, the pain subscale (0–20) of the Australian/Canadian (AUSCAN) hand index and a modified version (0–42 scale) of the Interimnt and Constant Osteo-Arthritis Pain (ICOAP) questionnaire.

Pressure pain thresholds (PPT) were measured with an algometer at two sites: dorsum of the OA finger joint reported to be most painful to test peripheral sensitisation, and at a remote site (mid-lateral above) to test widespread hyperalgesia. Temporal summation (TS), the increase in perceived pain to repetition, was assessed with a mechanical probe at the right wrist. First, probes with increasing weight (32, 64, 128, 256 g) were applied at the wrist until the patients reported pain of at least 4/10. The selected probe was applied to the wrist ten times at 1 Hz. Subjects reported NRS pain on the first, fifth and tenth touch. The magnitude of enhanced TS was defined as TS\text{\text{-}max} highest pain value of fifth or tenth touch minus the first pain value.

Subjects were categorised into sex-specific PPT tertiles. We then used linear regression to analyse whether PPT tertiles and TS\text{-}max were associated with pain severity with and without adjustments for age, sex, BMI, use of analgesics (NSAID, acetaminophen and opioid-like drugs) and several psychosocial factors (highest degree of completed education (1–7 scale), sleep disturbance (0–4 scale), the Pain Catastrophizing Scale (PCS) and the Hospital Anxiety and Depression Scale (HADS)).

Results: Median age was 61 (IQR 57, 67) years, symptom duration 6 (IQR 3, 13) years, and mean body mass index (BMI) was 26.5 (SD 4.9) kg/m\text{$^2$}. Median TS\text{-}max among the participants was 1 (IQR 0.2) and TS\text{-}max of 2 or more was found in 41%. Subjects in the lowest PPT tertile of their painful OA joint and tibialis anterior reported more hand pain than subjects in the highest PPT tertile. Unadjusted, the relation of PPT to NRS and ICOAP were statistically significant, and for the tibialis anterior only, it was also significantly associated with AUSCAN. After adjusting for potential confounders, the relationships were only statistically significant for NRS (Table). We found positive associations between increasing TS\text{-}max and NRS and ICOAP (beta 0.18, 95% CI 0.04, 0.32) and ICOAP (beta 0.63, 95% CI –0.16, 0.3), but not for AUSCAN pain (beta 0.12, 95% CI 0.11, 1.16).

Conclusions: In patients with HOA, sensitisation, as reflected by lower PPTs and enhanced TS, was significantly associated with greater pain severity. Future studies are needed to explore whether sensitisation is a result of OA pathology or traits of certain patients, and whether treatments aiming to reduce sensitisation might reduce pain in patients with HOA.

DisclosurE: None declared


SAFETY AND EFFICACY OF LUTIKIZUMAB (ABT-981), AN ANTI-INTERLEUKIN-1 ALPHA-BETA DUAL VARIATION DOMAIN (DV) LIGAND, IN SUBJECTS WITH KNEE OSTEOARTHRITIS: RESULTS FROM THE RANDOMISED, DOUBLE-BLIND, PLACEBO-CONTROLLED, PARALLEL-GROUP PHASE 2 TRIAL

R. Fleischmann1, H. Biddal2, F. Blanco3, T. Schnitzer4, G. Petery5, S. Chen6, L. Wang3, P. Conaghan7, F. Berenbaum8, J.-P. Pelletier7, J. Martel-Pelletier9, O. Vaeterleri10, W. Li11, G. Levy8, L. Zhang9, J. Medema10, M. Leveugle11. 1University of Texas Southwestern Medical Center at Dallas, Metroplex Clinical Research Center, Dallas, USA; 2Parker Institute, Blasiepberg-Frederikens Hospital, University of Copenhagen, Copenhagen, Denmark; 3NIIBIC-Instituto de Investigaciones Biomédicas de A Coruña-Complejo Hospitalario Universitario de A Coruña, A Coruña, Spain; 4Northwestern Medicine, Feinberg School of Medicine, Chicago; 5Spire Sciences, Inc., Boca Raton; 6AbbVie Inc., North Chicago, USA; 7 Leeds Institute of Rheumatism andMusculoskeletal Medicine, Leeds, UK; 8University Pierre and Marie Curie and Inserm, DHU i2B, APHP, Hospital Saint-Antoine, Paris, France; 9Centre Hospitalier de l’Université de Montréal, Montreal, Canada; 10Biclinica, Hamburg, Germany.

Background: Animal studies suggested that inhibiting IL-1c and IL-1b with lutikizumab (formerly, ABT-981) may reduce pain and slow structural progression in OA.

Objectives: This study (NCT02087904; ILLUSTRATE-K) assessed the safety and efficacy of lutikizumab in subjects with knee OA.

Methods: Subjects (n=350; 347 analysed) with Kellgren-Lawrence (KL) grade 2–4 knee OA, synovitis on MRI, and visual analogue scale knee pain score 4–8 (range, 0–10) were randomised to receive placebo (PBO) or lutikizumab 25, 100, or 200 mg subcutaneously (sc) every 2 wk (E2W) for 50 wk.

The primary endpoints were change from baseline (BL) in WOMAC pain at wk 16 and change from BL in MRI synovitis at wk 26. Other endpoints included WOMAC function and OMERACT/OARSI response (wk 16, 28, and 52) MRI cartilage volume (wk 26 and 52), and x-ray joint space narrowing (JSN) (wk 52).

Abstract SAT0575 – Table 1. Changes From Baseline in Efficacy Endpoints (LOCF)

<table>
<thead>
<tr>
<th>Endpoint</th>
<th>Proportion of Patients With Improvement (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>WOMAC pain</td>
<td></td>
</tr>
<tr>
<td>PBO</td>
<td>36.0%</td>
</tr>
<tr>
<td>Lutikizumab 25 mg</td>
<td>32.2%</td>
</tr>
<tr>
<td>Lutikizumab 100 mg</td>
<td>41.0%</td>
</tr>
<tr>
<td>Lutikizumab 200 mg</td>
<td>40.0%</td>
</tr>
</tbody>
</table>

Results: BL demographics and disease characteristics were balanced (KL grade 3, 36.0% vs 38.8%; mean WOMAC pain (scale 0–50), 26.2–28.4). The primary endpoint of WOMAC pain at wk 16 improved significantly, compared with PBO, with lutikizumab 100 mg (p=0.050), but not 25 mg (p=0.634) or 200 mg (p=0.415). WOMAC pain persisted in all lutikizumab groups from wk 16 to 52, but differences between lutikizumab and PBO for WOMAC pain and other key signs and symptoms were not significant (table 1). Synovitis-related imaging, cartilage volume endpoints, and JSN were similar between lutikizumab and PBO groups at wk 26 and 52. Lutikizumab was well tolerated; serious adverse events (SAEs), treatment-related SAEs, and infections and serious infections were lower in subjects with lutikizumab compared with PBO; however, injection site reactions were more frequent with lutikizumab vs PBO. Lutikizumab exposures reached steady state after wk 6 and were stable.