of different AAV in the Polish population seems very similar to other European countries.

Table 1: Annual cumulative incidence of GPA, MPA, and EGPA

<table>
<thead>
<tr>
<th>GPA</th>
<th>MPA</th>
<th>EGPA</th>
</tr>
</thead>
<tbody>
<tr>
<td>417</td>
<td>106</td>
<td>102</td>
</tr>
<tr>
<td>Male/female</td>
<td>210:207</td>
<td>54:52</td>
</tr>
<tr>
<td>Mean (median) age (yrs.);</td>
<td>48.9 (51.4)</td>
<td>61.5 (63.7)</td>
</tr>
</tbody>
</table>

Conclusions: This is the first multicenter retrospective study of the Polish countries. Demographic characteristics and disease manifestations of AAV patients in POLVAS registry follow the same pattern as those from other European countries.

REFERENCES:

Disclosure of Interest: None declared

SAT0534
ANNUAL INCIDENCE OF GIANT CELL ARTERITIS IN URBAN AND RURAL AREAS IN WESTERN NORWAY 1972–2012
L. Brekke1, B.-T. Fevang2, G. Myklebust3,
1Hospital for Rheumatic Diseases, Haugesund;
2Dept. of Rheumatology, Haukeland University Hospital, Bergen;
3Dept. of Rheumatology, Hospital of Southern Norway, Kristiansand, Norway
Background: Giant cell arteritis (GCA) is the most common vasculitis in adults. The etiology is not fully understood, and environmental factors which may influence the incidence are poorly investigated.
Objectives: To determine the potential influence of urban or rural residence on the incidence of GCA during a 41 year period.
Methods: Hospital-based retrospective cohort study including patients diagnosed with GCA in Bergen Health Area during 1972–2012. Patients were identified through computerised hospital records using the International Classification of Diseases (ICD)-coding system. Clinical information was extracted by review of the patients’ medical journals. The patients’ residential address was obtained from the population register in Norway. Municipalities were classified as urban (code 1 and 2) or rural (code 3 thru 6) using the Statistics Norway 2017 classification of centrality. The background population data was obtained from Statistics Norway (www.ssb.no).
Results: The inclusion process have been published previously. For the computing of incidence 743 patients were included. Among these there were 536 (72%) females (mean age 73.4 years, SD 8) and 207 (28%) males (mean age 72.6, SD 9). 493 patients (66%) had a positive temporal artery biopsy. 484 (72%) females (mean age 73.4 years, SD 8) and 207 (28%) males (mean age 72.6, SD 9) were included.
Conclusions: Annual cumulative incidence of GCA was slightly higher in urban than in rural areas in our study, but the difference was not statistically significant. This is in contrast to a previous study, which found GCA more prevalent in urban than in rural populations. Further studies are required to determine whether there is a true difference in incidence of GCA in urban versus rural populations, and whether or not exposures to environmental factors may be involved in GCA pathogenesis.
REFERENCEs:

Disclosure of Interest: L. Brekke Grant/research support from: MSD, B.-T. Fevang Consultant for: Lilly, Novartis, AbbVie, G. Myklebust: None declared
DOI: 10.1136/annrheumdis-2018-eular.3281

SAT0535
EULAR 2018 CORE SET OF DATA TO BE COLLECTED IN GIANT CELL ARTERITIS REGISTRIES AND DATABASES VIEWPOINTS FROM A EULAR TASK FORCE
1Department of Rheumatology and Clinical Immunology, Charité University Hospital, Berlin, Germany;
2Department of Medicine, Karolinska Institutet, Stockholm, Sweden;
3Department of Rheumatology and Clinical Immunology, University Medical Centre Utrecht, Utrecht, Netherlands;
4Department of Autoimmune Diseases, Hospital Clinic, University of Barcelona, Institut d’Investigacions Biomèdiques August Pi i Sunyer, Barcelona, Spain;
5Research Laboratory and Academic Division of Clinical Rheumatology, Department of Internal Medicine, University of Genoa, Genoa, Italy;
6Southend University Hospital NHS Foundation Trust, Westcliff-on-Sea, Essex, UK;
7Department of Rheumatology, Medical University of Graz, Graz, Austria;
8Rheumatology Service, Hospital of Bruneck, South Tyrol Health Trust, Bruneck, Italy;
9Arthritis Research UK Centre for Epidemiology, Centre for Musculoskeletal Research, Institute of Inflammation and Repair, University of Manchester, Manchester, UK;
10Medical Products Agency, Uppsala, Sweden;
11Cross-Committee Task Force on Registries, European Medicines Agency, London, UK;
12Division of Rheumatology, Geneva University Hospital, Geneva, Switzerland;
13Patient Representative from PMRGCAuk, London;
14NHIR-Leeds Musculoskeletal Biomedical Research Unit and Leeds Institute of Rheumatic and Musculoskeletal Medicine, University of Leeds, Leeds, UK;
15Department of Internal Medicine, Hospital Saint-Louis, University Paris 7 – Diderot, Paris, France;
16Division of Rheumatology and Department of Health Sciences Research, Mayo Clinic College of Medicine, Rochester, MN, USA;
17Patient Representative from PMRG-GCA Scotland, Perth, UK;
18Division of Internal Medicine, Azienda Ospedaliera-Istituto di Ricovero e Cura a Carattere Scientifico di Reggio Emilia, Reggio Emilia, Italy;
19Immanuel Krankenhaus Berlin: Medical Center for Rheumatology Berlin-Buch;
20Epidemiology Unit, German rheumatism research Centre, DRFZ, Berlin, Berlin, Germany;
21Amsterdam Rheumatology and Immunology Center (ACR), Amsterdam, Netherlands
Background: Giant cell arteritis (GCA) represents the most common form of primary vasculitis and can be associated with severe and potentially life-threatening complications. Due to its low prevalence, systematically collected data on course and outcome of this disease are scarce.

REFERENCES:

Disclosure of Interest: None declared
DOI: 10.1136/annrheumdis-2018-eular.3281