EVALUATION OF RADIOGRAPHIC PROGRESSION AFTER 4 YEARS OF ETANERCEPT (ETN) IN ANKYLosing SPONDYLITis (AS): RESULTS FROM THE OPEN-LABEL EXTENSION (OLE) OF THE PHASE 3 CLINICAL TRIAL

N. Haroon1, R.D. Inman1, M. Fairbank2, 3University Health Network, University of Toronto, Toronto; 4Amgen Canada Inc., Mississauga, Ontario, Canada

Background: ETN was well tolerated and showed clinical efficacy (ASAS 20: ETN 59%, placebo 28%, p<0.0001) through 24 wks in a phase 3 5 AS trial;1 efficacy was sustained up to 2 years in pts who completed the study and continued ETN in an OLE.2 No significant difference was found in change in modified Stoke AS Spine Score (mSASSS) from baseline (BL) to yr 2 of the OLE among ETN-treated pts vs a historic cohort not treated with tumour necrosis factor inhibitors (TNFi).3 Radio graphic data suggest disease progression continued in pts receiving ETN continuously throughout, but that disease progression may be slower after longer-term treatment with ETN vs shorter term. This adds to the already-existing data that demonstrate TNFi seem to reduce radiographic progression in pts with AS.

Objectives: Report radiographic progression through 4 years in ETN-treated pts with AS.

Methods: In the double-blind, placebo-controlled phase 3 study, pts with active AS were randomised to ETN 25 mg BIW or placebo for 24 wks. Pts who completed the study could enrol in a 168-wk OLE and were treated with ETN 25 mg BIW (amended after 17 months to 50 mg QW). The primary radiographic endpoint was change in mSASSS from BL to yr 2 vs change in mSASSS from yr 2 to yr 4.

Results: 257 pts were treated in the OLE, of whom 126 (49.0%) completed the study and continued ETN in the phase 3 study or OLE. Mean mSASSS between yr 2 and yr 4 was 0.66 (n=109). The nominal p-value for change in mSASSS from BL to yr 2 vs change from yr 2 to yr 4 was 0.0536. Radio graphic data suggest disease progression continued in pts receiving ETN continuously over 4 years; however, mean mSASSS increased from BL to yr 2 and not from yr 2 to yr 4 (figure 1) due to a few outlier patients with large mSASSS values at yr 2 but missing 4 year data.

Conclusions: This is the first report of 4 year radiographic ETN data in AS, and these data suggest that disease progression continued in pts who received ETN continuously throughout, but that disease progression may be slower after longer-term treatment with ETN vs shorter term. This adds to the already-existing data that demonstrate TNFi seem to reduce radiographic progression in pts with AS.

REFERENCES:

SAFETY AND EFFICACY OF TOFACITINIB, AN ORAL JANUS KINASE INHIBITOR, UP TO 36 MONTHS IN PATIENTS WITH ACTIVE PSORIATIC ARTHRITIS: DATA FROM THE THIRD INTERIM ANALYSIS OF OPAL BALANCE, AN OPEN-LABEL, LONG-TERM EXTENSION STUDY

P. Nash1, L.C. Coates2, A.J. Kivitz3, P.J. Mease4, D.D. Gladman5, J. A. Covasatias-Cobosas6, D. Fleischaker7, C. Wang8, E. Kudlacz9, S. Menon10, L. Fallon11, T. Hendrie12, K.S. Kank13 University of Queensland, Brisbane, Australia; 2University of Oxford, Oxford, UK; 3Altona Center for Clinical Research, Duncansville; 4Swedish Medical Center and University of Washington, Seattle, USA; 5University of Toronto, Toronto Western Hospital, Toronto, Canada; 6Unidad Reumatologica Las Americas S.C.P, Mérida, Mexico; 7Pfizer Inc, Groton, USA; 8Pfizer Canada, Montreal, Canada; 9Pfizer Inc, Collegeville, USA

Background: Tofacitinib is an oral Janus kinase inhibitor for the treatment of psoriatic arthritis (PsA).

Objectives: To report the safety, tolerability and efficacy of tofacitinib in patients (pts) with active PsA from an ongoing, open-label, long-term extension (LTE) study (OPAL Balance, NCT01978364; November 2017 data-cut, database not locked).

Methods: Eligible pts from 2 Phase (P)3 tofacitinib PsA studies (OPAL Broaden, NCT01877668; OPAL Beyond, NCT01882439) entered a 3 year LTE ≥3 months after completing the P3 study or discontinuing for reasons unrelated to study drug. Pts received tofacitinib 5 mg BID to Month (M) 1, after which dose adjustments between 5 and 10 mg BID were permitted to improve efficacy, or for safety reasons. Pts receiving a csDMARD at P3 study entry continued the same csDMARD in the LTE. Primary endpoints were incidence and severity of adverse events (AEs) and changes from baseline (BL) in laboratory variables. Safety data are reported up to M36. Efficacy was evaluated up to M30 (when n=50) as a secondary endpoint.

Results: 866 pts were treated in OPAL Balance: 468 (68.2%) remained in the study at data cut-off. Mean (range) LTE tofacitinib exposure was 614 (1–1032) days. On Day 1, 675 pts (98.4%) received a csDMARD, which was discontinued in 86 pts (12.7%). To M36, 2189 AEs were reported in 546 pts (79.6%); 95 pts (13.8%) had serious AEs and 59 pts (8.6%) discontinued due to AEs. Serious infections occurred in 12 pts (1.7%), hepses zoster (HZ) in 20 pts (2.9%; 1 serious event), major adverse cardiovascular events in 5 pts (0.7%), malignancies in 24 pts (3.5%; including 12 pts with NMSC) and uveitis in 2 pts (0.3%). No AEs of gastrointestinal perforation or inflammatory bowel disease were reported. There were 5 deaths (not attributed to treatment, as assessed by the investigator) due to metastatic pancreatic carcinoma, acute cardiac failure/hypertensive heart disease, chronic obstructive pulmonary disease, pulmonary embolism and cardiovascular insufficiency. Four AEs of latent tuberculosis were reported in pts whose previously negative Quantiferon response became positive. ALT was elevated ≥3 x ULN in 27 pts (4.0%), and AST≥3 x ULN in 15 pts (2.2%). Changes in laboratory values observed in P3 studies were generally stable in the LTE, except for a modest decrease in absolute lymphocyte count over time. Eight pts (1.2%) discontinued (protocol-mandated) due to laboratory value changes. ACR responses, ≥DAS28CRP50, ≥DAS28ESR32, ≥Dactylitis Severity Score and ≥Pain were maintained up to M30.

Conclusion: Over 36 months in the LTE, the safety profile of tofacitinib in active PsA pts was generally similar to that of the P3 studies. No new safety risks were identified. Efficacy across various PsA disease domains was maintained over time.

Acknowledgements: Study sponsored by Pfizer Inc. Medical writing support was provided by A MacLachlan of CMC and funded by Pfizer Inc.

Disclosure of Interest: P. Nash Grant/research support from: AbbVie, Bristol-Myers Squibb, Eli Lilly, Janssen, Novartis, Pfizer Inc, Roche, Sanofi, UCB, Speakers bureau: AbbVie, Bristol-Myers Squibb, Eli Lilly, Janssen, Novartis, Pfizer Inc, Roche, Sanofi, UCB, L. Coates Grant/research support from: AbbVie, Janssen, Consultant for: AbbVie, Amgen, Bristol-Myers Squibb, Celgene, Janssen, MSD, Novartis, Pfizer Inc, Sun Pharma, UCB, A. Kivitz Consultant for: AbbVie, Celgene, Genentech, Genzyme, Janssen, Merck, Novartis, Pfizer Inc, Sanofi, UCB, Speakers bureau: AbbVie, Celgene,

Background: Enthesitis, a key pathology in axial spondyloarthritis (axSpA), has been difficult to treat with conventional therapies and may take longer to resolve than other disease manifestations. It is unknown if failure to attain resolution of enthesitis affects achievement of normal quality of life (QoL) and clinical response.

Objectives: To assess if enthesitis at baseline (BL) and after 12 wks of adalimumab (ADA) treatment in the ABILITY-3 study associates with achieving normal QoL and clinical response in patients (pts) with non-radiographic axSpA (nr-axSpA).

Methods: ABILITY-3 enrolled adult pts with nr-axSpA with objective evidence of axSpA. QoL and clinical response in patients (pts) with non-radiographic axSpA (nr-axSpA).

Conclusion: 39% of pts achieved complete resolution of enthesitis after 12 wks of ADA treatment. Total enthesitis count at BL was not associated with normal QoL and inversely associated with clinical response at wk 12. Total enthesitis count at wk 12 was negatively associated with normal QoL and clinical response. Our exploratory analysis suggested possible inverse associations of specific BL enthesitis sites with achievement of normal QoL and clinical response; however, additional research is needed to further define these relationships.

Acknowledgements: AbbVie funded the study and approved the abstract for submission. Medical writing support was provided by Janet Matsuura, PhD, of Complete Publication Solutions, LLC (North Wales, PA) and was funded by AbbVie.

Disclosure of Interest: P. Mease Grant/research support from: AbbVie, Amgen, Bristol-Myers Squibb, Celgene, Janssen, Lilly, Novartis, Pfizer, Sun Pharma, and UCB, Consultant for: AbbVie, Amgen, Bristol-Myers Squibb, Celgene, Janssen, Lilly, Novartis, Pfizer, Sun Pharma, and UCB, Speakers bureau: AbbVie, Amgen, Bristol-Myers Squibb, Celgene, Janssen, Lilly, Novartis, Pfizer, and UCB, F. Van den Bosch Grant/research support from: AbbVie, Bristol-Myers Squibb, Celgene, Janssen, Lilly, Merck, Novartis, Pfizer, and UCB, Consultant for: AbbVie, Bristol-Myers Squibb, Celgene, Janssen, Lilly, Merck, Novartis, Pfizer, and UCB, Speakers bureau: AbbVie, Bristol-Myers Squibb, Celgene, Janssen, Lilly, Merck, Novartis, Pfizer, and UCB, U. Kiltz Grant/research support from: Pfizer, Consultant for: AbbVie, Grünenthal, Novartis, and UCB, Speakers bureau: AbbVie, Chugai, Janssen, Lilly, MSD, Novartis, Pfizer, and Roche, P. Zueger Employee of: AbbVie, K. Chen Employee of: AbbVie, M. Wu Employee of: AbbVie, J. Anderson Employee of: AbbVie.