IL-17 BLOCKADE WITH SECUKINUMAB IN PERIPHERAL SPONDYLOARTHRITIS IMPACTS SYNOVIAL IMMUNOPATHOLOGY WITHOUT COMPROMISING SYSTEMIC IMMUNE RESPONSES

M. van de Sande*, 1L. van Mens, 1S. Menegatti, 1T. Blijdorp, 1J. de Jong, 1F. Kuij, 1T. Latuhihin, 1A. van Kuijk, 1T. Rogge, 1N. Yerenenko, 1D. Baeten. Clinical Immunology and Rheumatology, Amsterdam Rheumatology and immunology Centre, Academic Medical Center-University of Amsterdam, Amsterdam, Netherlands; 2Immunoregulation Unit, Institut Pasteur, Paris; France; 3Amsterdam Rheumatology and immunology Centre, Reade, Amsterdam, Netherlands.

Introduction Secukinumab (anti-IL-17A) is an effective therapy for ankylosing spondylitis(AS) and psoriatic arthritis (PsA), the prototypical forms of spondyloarthritis (SpA).

Objectives This study assessed if secukinumab modulates the immunopathology of target lesions without blunting systemic immune responses, using peripheral SpA (psSpA) as model.

Methods 20 active peripheral SpA patients were included in a 12 week open-label trial with secukinumab (300 mg weekly for 4 weeks followed by every 4 weeks). Outcomes included clinical response, cytokine production by peripheral blood cells using TrueCulture technology, and histological and qPCR analysis of synovial biopsies before and after treatment.

Results All patients completed the 12 week study, without SAEs or severe treatment-related AEs. The primary efficacy endpoint, EULAR DAS 28 response at wk 12, was achieved by 18/20 patients (10 good and 8 moderate responders), with rapid and significant improvements in all clinical disease activity measurements. Clinical improvement in joint counts was associated with histological decrease in synovial sublining macrophages (p=0.028) and neutrophils (p=0.004), sensitive synovial biomarkers of response in psSpA, as well as with decreased synovial expression of IL-17A (p=0.010) but not TNF.

Systemically, secukinumab treatment decreased CRP (p<0.01) and ESR (p<0.01), as well as MMP-3 production in the truculture system (p<0.01). With exception of IL-17A itself, however, the capacity of peripheral blood cells to produce a broad panel of cytokines and chemokines upon stimulation with microbial antigens was not affected.

Conclusions This mechanism-of-action study in psSpA indicates that clinical improvement upon secukinumab treatment is paralleled by immunomodulation of the inflamed target tissues without compromising systemic immune responses.

Disclosure of interest None declared
Research Centre (BRC) award to Guy’s and St. Thomas’ NHS Foundation Trust in partnership with King’s College London and King’s College Hospital NHS Foundation Trust.

Disclosure of interest K. Steel: None declared, S.-Y. Wu: None declared, U. Srenathan: None declared, E. Chan: None declared, B. Kirkham Grant/research support from: Novartis, L. Taams Grant/research support from: Novartis/UCB

IL-7 IN PRIMARY SJÖGREN SYNDROME (PSS) IS SECRETED BY SALIVARY GLAND EPITHELIAL CELLS AFTER IFN STIMULATION AND IS ASSOCIATED WITH B-CELL ACTIVATION

Introduction PSS is characterised by a strong IFN signature, ectopic germinal centres formation and a chronic blood lymphopenia. IL-7 plays a central part in T cells homeostasis and in lymphoid structures organisation.

Objectives To assess the role of IL-7 in pSS pathogenesis.

Methods IL-7 serum level was assessed in 372 pSS patients and 73 paired controls. Primary cultures of salivary gland epithelial cells (SGEC) from patients and controls were stimulated by Poly I:C 30 ng/ml, IFN-α 600 U/μl, IFN-γ 5 ng/ml and IFN-λ (IL-28) 25 ng/ml for 72 hours. IL-7 secretion was tested in culture supernatant by ELISA. IL-7 expression after IFN stimulation and is associated with B-cell activation.

Results pSS patients had higher serum IL-7 levels than controls: 7.56 ng/ml±8.52 (mean±SD) versus 4.86 ng/ml±5.59, p<0.0001. A positive correlation with B cells activation markers, IFN-induced chemokines and disease activity markers was observed. In multivariate analysis, serum IL-7 level was associated with CXCL13, anti-SSA, RF, κ light-chain and low C4.

SGEC stimulation with Poly I:C, IFN-α, γ- and -λ induced IL-7 protein secretion in the supernatant (p=0.002, p=0.004, p=0.007, p=0.004 respectively). A trend for a greater IL-7 production in pSS patients compared to controls was observed. IL-7 expression was confirmed by quantitative RT-PCR. Among cell subsets purified ex vivo from SGB and PBMC, RNA-Seq analysis showed a greater expression of IL-7 by epithelial cells of patients compared to controls (p=0.03). No difference was observed regarding T and B cells either from biopsies or PBMC. IL-7 receptor expression was equivalent between patients and controls. Analysis of T cells exhaustion profile and IL-7 intracellular signalling are on-going.

Conclusions Our data demonstrate that IL-7 is secreted within the target tissue of pSS by SGEC after stimulation by IFNs. This IFN/IL-7 pathway can be involved in the organisation of ectopic germinal centres found in pSS. But more importantly, since IL-7 is one of the major controller of homeostasis of T cells, this IFN/IL-7 pathway could be involved in the persistent lymphopenia which is a hallmark of the disease, either by favouring exhaustion of T cells or by an impaired function of the IL-7 intracellular signalling. Both mechanisms are currently explored and will be presented.

Disclosure of interest None declared

CCRE6+ T HELPER CELLS DRIVE ANTIGEN-INDUCED ARTHRITIS VIA THE IL-23R PATHWAY

Introduction The IL-23/IL-17A immune pathway is important for the progression of T cell-mediated arthritis. However, it is not known where IL-23R+ T cells locate at different stages of arthritis and which IL-23R+ cells are drivers of joint inflammation.

Objectives We aimed to identify IL-23R+ T cells in the secondary lymphoid organs and synovium during the development and progression of antigen-induced arthritis (AIA). Furthermore, we studied which IL-23R+ cells drive full-blown AIA.

Methods To induce AIA, IL-23R+/+ (wild type), heterozygous IL-23R+/GFP (IL-23R-GFP + reporter), and IL-23RGFP/GFP (IL-23RKO) mice were immunised with methylated bovine serum albumin (mBSA) in Complete Freund’s Adjuvant. After 7 days mice were injected in the knee joints with mBSA. Mice were macroscopically scored and knees were used for histological analysis of inflammation and bone erosion. The spleen, inguinal and popliteal lymph nodes, and the synovium were collected and assessed for expression of GFP/IL-23R+ cells. Adoptive transfer of CCR6+ T helper cells and γδ T cells from heterozygous mice into IL-23RKO mice was performed via i.v. injection prior to AIA induction.

Results AIA disease progression was mainly driven by the IL-23R pathway as IL-23RKO mice had significantly lower arthritis scores and less bone damage. Heterozygous mice had similar disease scores to WT mice, indicating that half of the receptor expression is sufficient to drive disease. Flow cytometric analysis of GFP/IL-23R expression revealed that among the T cells, CCR6+ T helper and γδ T cells but not CD8+ T cells expressed the IL-23R in the lymphoid tissues. During the progressive phase of arthritis, lymphoid tissue cell numbers were lower in IL-23RKO mice. On the other hand, the overall percentage of T cells was higher in the IL-23RKO lymphoid tissues, suggesting that these cells develop but remain in the lymphoid tissues. CD4+ and γδ T cells but not CD8+ T cells were abundantly present in the WT joints during arthritis, but decreased in IL-23RKO joints. Adoptive transfer of CCR6+ T helper and γδ T cells into IL-23RKO mice revealed that CCR6+ T helper cells are the main drivers of AIA.

Conclusions AIA progression is driven by IL-23R signalling and CCR6+ T helper cells can rescue arthritis in IL-23R deficient mice. Among the T cells, only CCR6+ T helper and γδ T cells express the IL-23R in the lymphoid tissues. IL-23R signalling might be involved in T cell proliferation and/or migration, since CD4+ and γδ T cell infiltration is decreased in the IL-23RKO synovium.

Disclosure of interest None declared