Abstracts

REFERENCES

Disclosure of interest L. Wang: None declared, S. Wang: None declared, V. Taneja: None declared, R. Vassallo Grant/research support from: Pfizer and Bristol Myers Squibb

P104 SYNVOIAL FIBROBLAST RELATIONSHIP STATUS: IT’S COMPLICATED
1RA Byrne*, 1Olimos Calvo, 2P Jartog, 1A Platzer, 1V Zheidan, 1L Lovicar, 4H Holinka, G Sterier, 5P Ertj, 7JS Smolen, 4HP Kien, 1Dep. of Medicine III – Rheumatology, Medical University of Vienna; 2CEMM, Vienna; 4Institute for Science and Technology Austria, Klosterneuburg; 5Dep. of Orthopaedics, Medical University of Vienna; 7Dep. of Chemical Technologies and Analytics, TU Vienna, Vienna, Austria

Introduction The synovium is primarily built by fibroblast-like-synoviocytes (FLS). In the healthy synovium FLS form a complex tissue network via long-distance intercellular connexions (nanotubes). Using a 3D synovial micromass culture system, our previous research demonstrated that FLS exchange cytoplasmic cargo, i.e. organelles like mitochondria, via transfer through direct cell-to-cell connexions. The adaptive synovial tissue response to inflammation (i.e. to TNFα) likely depends upon the concerted communication between FLS.

Objectives To determine how the cellular organisation of the synovial tissue affects intercellular cargo exchange and how it changes under inflammatory conditions.

Methods Human FLS were isolated from joint tissues after synovectomies; passaged FLS were used to generate 3D micromass cultures using Matrigel (BD). For ultrastructural 3D reconstruction ultrathin sections of fixed micromasses were cut with an ATUMTom for FE-SEM scanning, followed by alignment and reconstruction of individual cells with Fiji TrackEM. To compare unstimulated and TNF-stimulated micromass cultures using Matrigel (BD). For ultrastructural 3D reconstruction of synovial micromass tissue SEM 3D reconstruction of synovial micromass tissue was done in Birplane Imaris. Results SEM 3D reconstruction of synovial micromass tissue revealed that FLS are compartmentalised, and thus, much larger and extended than expected. Thin membrane tubes not only connect different cells but also compartiments of the same cell. Additionally, one nanotube may provide a link to several other cells and these connexions are in general separated by membranes. Treatment of micromasses with TNFα resulted in cellular condensation, reduced cell volume as well as diminished cellular connectivity when compared to unstimulated micromasses. In particular, the abundance of interconnecting nanotubes was significantly attenuated. The mitochondrial transfer rate increased as FLS clustered upon TNFα stimulation.

Conclusions TNFα directed FLS cellular re-organisation that is associated with increased intercellular transfer of mitochondria. These studies may provide insight into the concerted cooperation of FLS that is likely critical for the adaptive synovial response to inflammation.

Disclosure of interest None declared

P105 ENDOPLASMIC RETICULUM STRESS MEDIATES DERMAL FIBROSIS
5S O’Reilly*. Life sciences, Northumbria University, Newcastle Upon Tyne, UK

Introduction Systemic sclerosis is an autoimmune idiopathic connective tissue disease. The cells mainly responsible are the myofibroblasts that secrete copious amount of extracellular matrix molecules such as collagen. Endoplasmic reticulum stress is induced by a variety of stressors including misfolded proteins, this leads to a classic stress response and activation of X Box Binding Protein-1 (XBP-1) and ATF-6. This is induced in a variety of situations from multiple stressors and is a conserved pathway. Its role in systemic sclerosis is unknown.

Objectives To examine the role of endoplasmic reticulum stress in systemic sclerosis.

Methods Healthy dermal fibroblasts were treated with the ER stress inducing agent thapsigargin or nothing and then lysed and various proteins such as XBP-1 and ATF measured along with collagen by western blotting and reprobed for a loading control. In some experiments small interfering RNA against XBP-1, a mediator of ER stress, was transfected and treated with thapsigargin or non-targeting controls. Also the bleomycin mouse model of fibrosis was used and ATF6 mRNA was measured using qRT-PCR.

Results The classic ER stress inducer thapsigargin induced collagen expression in dermal fibroblasts as well as the markers of ER stress XBP-1 and ATF-6. The ER stress induced collagen expression in dermal fibroblasts was reduced with the reduction of XBP-1 in these cells using small interfering RNA compared to non-targeting siRNA. The bleomycin model of skin fibrosis revealed increased ATF-6 mRNA levels compared to vehicle control tissue.

Conclusions Endoplasmic reticulum stress appears to regulated collagen expression in the skin and is involved in the bleomycin mouse model of disease. Targeting such a pathway may be useful in the disease.

Disclosure of interest None declared

P106 ABSTRACT WITHDRAWN

P107 TARGETING ACTIVATED SYNOVIAL FIBROBLASTS USING PHOTODYNAMIC THERAPY IN EXPERIMENTAL ARTHRITIS
1DN Dorst*, 1M Ripkema, 2M Buttinga, 3M Brom, 1DL Bos, 2A Freimoser, 2C Klein, B Walgreen, 1PA van der Kraan, 1M Goizend, 2M Koenders. 1Radboud university medical centre, Nijmegen, Netherlands; 2KU Leuven, Leuven, Belgium; 2Radboudumc, Leuven, Netherlands; 2Roche innovation centre, Zurich, Austria

Introduction Activated synovial fibroblasts (SF) are characterised by the expression of Fibroblast Activation Protein (FAP). Here, we investigated the potential of photodynamic therapy (PDT) targeting FAP to selectively induce cell death in these
cells. In PDT, a light-sensitive molecule is delivered to a target cell and activated with light of a specific wavelength. This causes cell death through the production of reactive oxygen species.

Methods The anti-FAP antibody 28 H1 was conjugated with the photosensitizer IRDye700DX (28H1-700DX). *In vitro* PDT assays were performed with 3 T3 fibroblasts stably transfected with FAP. 3T3-FAP cells were incubated with 28H1-700DX or a control conjugate for 4 hours, and exposed to varying 690 nm light doses. Subsequently, cell viability was measured using CellTiter-Glo assay. For *in vivo* biodistribution, 5 days after onset of antigen-induced arthritis (AIA) C37Bl/6 mice were injected with 28H1±700 DX labelled with radioactive Indium for quantification purposes (expressed as % injected dose per gram tissue (%ID/g)). For the PDT treatment experiment, arthritic mice were injected at day 5 of AIA with 28H1-700DX or PBS and exposed to 50 or 90 J/cm² light 24 hours post injection. Joints were isolated at day 10 for histological analysis.

Results To assess PDT efficacy, we applied 13.7 J/cm² light exposure to 3T3-FAP cells incubated with 6.67 pM 28H1-700DX, which significantly reduced cell viability (89.27% ± 2.48 compared to control (p<0.001)). No cell death was observed with the control 700DX-conjugate.

Conjugating the anti-FAP antibody to 700DX changed the *in vivo* biodistribution of the antibody, with a higher accumulation in the liver (27.06±0.95%ID/g vs. 6.08±0.42%ID/g with control (p<0.001)) and lower blood levels (5.32±0.36% ID/g vs. 12.72±0.80%ID/g with control (p<0.001)). Accumulation in the arthritic joints was not significantly different. Histological analysis of the PDT-treated mouse knee joints is ongoing.

Conclusions We have demonstrated fibroblast-specific cell death using 700DX-conjugated 28 H1 PDT, indicating FAP-based PDT as a promising new tool in treating RA. Furthermore, we demonstrated that adding 700DX results in faster liver clearance of the antibody, but does not affect uptake in the inflamed knee joint. Future research will further elucidate the applicability of our conjugate for PDT in animal models of RA.

Disclosure of interest None declared