Abstracts

IL-10 REGULATES SKIN THICKNESS AND SCALING IN IMIQUIMOD-INDUCED PSORIASIS-LIKE SKIN INFLAMMATION IN MICE

Erasmus MC Rotterdam, Rotterdam; Bioceros, Utrecht, Netherlands

Introduction Psoriasis is an autoimmune skin disease affecting around 0.6% to 3% of the whole population with detrimental physical and societal impacts. Previously, we established a psoriasis-like skin inflammation model in mice using topical application of imiquimod (IMQ). This model successfully captures all critical features of clinical psoriasis such as keratinocyte hyperproliferation, muno’s microabscesses, and shares a similar infiltration profile of various immune cells. Previous data suggest up-regulation of IL-10, but its role in this psoriasis model is not clear.

Objectives To investigate the role of IL-10 in the IMQ-induced psoriasis-like skin inflammation.

Methods Psoriasis-like skin inflammation was induced by topical application of imiquimod (Aldeara) for 5 or 10 days. Mice were injected intraperitoneally with anti-IL-10 or an isotype control antibody or subcutaneously with dexamethasone. Back skin of mice was scored for up to 10 days using a modified Psoriasis Area and Severity Index (PASI) score system adapted from clinical PASI score. Inflammation and skin thickness were scored histologically. Gene expression and immune cells in the skin were analysed using RT-PCR and flow cytometry, respectively.

Results At day 10, both skin thickness and scaling score were significantly higher after neutralising IL-10 compared to isotype control, or either group compared to dexamethasone-treated animals. At days 5 and 10, H and E staining confirmed that epidermal thickness was more prominent in anti-IL-10 treated mice compared to isotype control or dexamethasone-treated mice, with more profound differences at day 10. Ki-67 staining for proliferating keratinocytes showed more proliferation at the epidermal basal layer after neutralising IL-10. In addition, significant more infiltration of neutrophils was found in skin at day 10. At day 5, IL-23/IL-17 pathway cytokines were more significantly upregulated in anti-IL-10 group than the isotype control group, while at day 10, a significant upregulation of IL-19, IL-24 expression were found in anti-IL-10 group compared to isotype control.

Conclusions IL-10 regulates skin thickness and scaling during psoriasis-like skin inflammation. Furthermore, our data suggested that IL-10 might influence psoriatic symptoms through dampening of IL-23/IL-17 axis in early phase (day 5) and reducing IL-19 and IL-24 expression at late stage (day 10). The negative feedback signal of IL-10 partially explains the observed decrease of inflammation in imiquimod-induced skin inflammation after day 5.

Disclosure of interest None declared, E. Prens: None declared, E. Florencio: None declared, L. Boon: None declared, A-M. Otten-Mus: None declared, A.-M. Otten-Mus: None declared, E. Lubberts Grant/research support from: Novartis

P074

P075

CHANGES OF METABOLIC BIOMARKER LEVELS UPON ANTI-TNF THERAPY IN RHEUMATOID ARTHRITIS

A Potzta*, E Végh, I Horváth, S Szántó, G Szász, A Hamar, K Hodosi, S Seres, G Kerekes, Z Székely, Division of Rheumatology, Department of Medicine; 2Division of Metabolic Disease, Department of Medicine; 3Division of Intensive Care Unit, Department of Medicine, University of Debrecen, Faculty of Medicine, Debrecen, Hungary

Introduction Rheumatoid arthritis (RA) has been associated with cardiovascular disease and metabolic syndrome. Numerous pro-inflammatory cytokines (e.g. TNF-α, IL-1, IL-6) are released, which cytokines cause increased reactive oxygen species (ROS) production and thereby contribute to the increased lipid peroxidation and reduction of many antioxidants. These processes not only lead to the deterioration of joints and other tissues but may also contribute to comorbidities, such as atherosclerosis.

Objectives The aim of this study was to assess the effects of anti-TNF therapy on different metabolic markers, such as PON1 (paraoxonase 1), arginase, chemerin and...