Abstracts

IL-10 REGULATES SKIN THICKNESS AND SCALING IN IMIQUIMOD-INDUCED PSORIASIS-LIKE SKIN INFLAMMATION IN MICE

Introduction Psoriasis is an autoimmune skin disease affecting around 0.6% to 3% of the whole population with detrimental physical and societal impacts. Previously, we established a psoriasis-like skin inflammation model in mice using topical application of imiquimod (IMQ). This model successfully recaptures all critical features of clinical psoriasis such as keratinocyte hyperproliferation, munro’s microabcesses, and shares a similar infiltration profile of various immune cells. Previous data suggest up-regulation of IL-10, but its role in this psoriasis model is not clear.

Objectives Here we investigate the impact of activin A on joint destruction in rheumatoid arthritis.

Methods Synovial tissue samples from rheumatoid arthritis (RA) and osteoarthritis (OA) patients were analysed by immunohistochemical staining. For in vitro experiments, bone marrow-derived macrophages (BMMs) were isolated from femurs and tibias of WT mice and differentiated into osteoclasts in the presence of macrophage colony-stimulating factor (M-CSF) and RANKL with or without activin A. OC differentiation was characterised by TRAP staining. Resorption activity was determined by quantification of osteoclast-mediated pit formation on a calcium phosphate-coated plate. Proliferation of BMMs was evaluated using the CyQUANT Cell Proliferation Assay Kit. Furthermore, osteoclast-specific gene expression as well as the activation of SMAD2, MAPK and NF-kB signalling were analysed by immunoblotting. The interaction of phospho-SMAD2 with NFATc1 was evaluated by co-immunoprecipitation using Dynabeads.

Results We demonstrate that activin A is highly abundant in the synovium of RA but not of OA patients. In vitro, activin A strongly enhanced the RANKL-mediated differentiation of BMMs into mature OCs, reflected by a significantly increased OC number, OC size and number of nuclei per OC compared to the conventional treatment with RANKL alone. Moreover, concomitant administration of activin A led to a significant increase of the total resorption area as well as resorption area per pit, indicating an increased activity of individual OCs. Effects of activin A on BMMs were not caused by increased proliferation since no effect on M-CSF-driven proliferation was observed. Furthermore, activin A alone was not able to induce the expression of OC differentiation markers, but the RANKL-induced expression was enhanced by activin A. After stimulation with activin A, BMMs showed an activation of SMAD2, but not of MAPK p38, ERK, JNK or NF-kB. Finally, co-stimulation of RANKL and activin A resulted in an increased interaction of activated SMAD2 with NFATc1.

Conclusions The data strongly suggest that increased expression of activin A in the arthritic joint is most likely associated with enhanced osteoclast formation, promoting joint destruction in rheumatoid arthritis.

Disclosure of interest None declared

P075 CHANGES OF METABOLIC BIOMARKER LEVELS UPON ANTI-TNF THERAPY IN RHEUMATOID ARTHRITIS

Introduction Rheumatoid arthritis (RA) has been associated with cardiovascular disease and metabolic syndrome. Numerous pro-inflammatory cytokines (e.g. TNF-α, IL-1, IL-6) are released, which cytokines cause increased reactive oxygen species (ROS) production and thereby contribute to the increased lipid peroxidation and reduction of many antioxidants. These processes not only lead to the deterioration of joints and other tissues but may also contribute to comorbidities, such as atherosclerosis.

Objectives The aim of this study was to assess the effects of anti-TNF therapy on different metabolic markers, such as PON1 (paraoxonase 1), arylesterase, chemerin and...