Abstracts

Transglutaminase-2 in osteoarthritis: MMP-13 production through enhanced FOXO3A nuclear translocation

1,2,5 Han*, 1,2,5-S Han, 3,5-R Kwon. 1Internal medicine, Daegu Fatima hospital; 2Laboratory for arthritis and bone biology, Fatima Research Institute, Daegu; 3Internal medicine, Inha university hospital, Incheon, Korea, Republic of Ireland

Introduction Transglutaminase 2 (TG2) also known as tissue transglutaminase, is a calcium-dependent enzyme that has a variety of intracellular and extracellular substrates. It has been well known that TG2 increases in osteoarthritis (OA) tissue and can be used as a biomarker of OA.

Objectives To elucidated the molecular mechanism of TG2 during the cartilage degradation in OA.

Methods The surgical destabilisation of the medial meniscus (DMM) model is used to induce OA in 10-week-old male C57BL/6J mice. Primary chondrocytes were obtained from E15.5 long bones, and ZDON, a cell-permeable, peptide-based, irreversible inhibitor of TG2, was used to inhibit the function of TG2 and calcium ionophore to stimulate TG2.

Results TG2 expression was increased in articular cartilage and growth plate in surgical OA model. When treated with various growth factors, only TGFβ1 increased TG2 expression of primary chondrocyte in a dose-dependent manner. Intra-articular injection of specific TG2 inhibitor, ZDON, ameliorated the severity and MMP-13 expression in surgically-induced OA. ZDON attenuated MMP-3 and MMP-13 expression in TGFβ1- and calcium ionophore-treated chondrocytes in a Runx2-independent manner. TG2 activation by calcium ionophore induced phosphorylation of FoxO3a and ZDON decreased total FoxO3a as well as nuclear FoxO3a level. FoxO3a and TG2 were co-localised in primary chondrocytes and immunoprecipitation analysis revealed a direct interaction of FoxO3a and TG2, suggesting enhanced nuclear translocation of FoxO3a by TG2.

Conclusions Our data provide an evidence of TG2 as an enhancer of FoxO3a-nuclear translocation which was responsible for the TG2-dependent MMP-13 expression.

Disclosure of interest None declared

References

Disclosure of interest None declared

P044

Anticollagen type II antibodies are associated with early inflammation in Malaysian rheumatoid arthritis patients with three different ethnicities

1 CL Too, 2 VA Manivel, 3 L Perisindu, 4 J Hänni*, 5 S Murad. 1Immunogenetic Unit, Allergy and Immunology Research Centre, Institute for Medical Research, Kuala Lumpur, Malaysia; 2Immunology, Genetics and Pathology, Uppsala University, Uppsala, Sweden; 3Federal Government Administrative Centre, Ministry of Health Malaysia, Putrajaya, Malaysia

Introduction: Transglutaminase type II antibodies (anti-CII) have an acute onset phenotype with elevated levels of C-reactive protein (CRP) and erythrocyte sedimentation rate, as well as higher disease activity score and number of swollen joints [Manivel et al. Ann Rheum Dis 2017 September;76(9):1529–1536]. Our aim was to replicate this in a multiethnic Malaysian RA cohort.

Methods Anti-CII, anti-CCP2, IgM RF and IgG RF were measured in 1,105 Malaysian early RA patients and 1,565 healthy controls of Malay, Chinese or Indian ethnicity in the Malaysian Epidemiological Investigation of RA (MyEIRA) case control study, and related to baseline CRP and to HLA-DRB1* alleles.

Results 106/1,105 (9.6%) of the RA patients had elevated anti-CII. Anti-CII levels were higher in RA patients than in controls (p<0.0001), generally higher in Malay than in Indian or Chinese subjects, and also higher in Malaysian than in Swedish healthy controls. All measured autoantibodies associated with elevated baseline CRP. The occurrence of anti-CII did not associate with the occurrence of anti-CCP2, IgG RF and IgM RF, and when patients with only one antibody were compared to antibody negative patients, only anti-CII associated with elevated CRP (p=0.0310). HLA-DRB1*12:01 positive patients has higher levels of anti-CII (p=0.01) whereas Malaysian Malay patients with HLADRB1*12:02 had lower anti-CII levels (p<0.002) as compared to individuals lacking the corresponding genotype.

Conclusions Elevated anti-CII levels at the time of RA onset associate with an early inflammatory RA phenotype not only in Caucasian, but also in an Asian RA population. This supports our hypothesis that the association between early elevations of anti-CII and the acute onset RA phenotype is a finding of global validity.
References


Disclosure of interest None declared

PO50 HIGH CHOLESTEROL LEVELS BY APOE DEFICIENCY REDUCE BONE DESTRUCTION IN ANTIGEN-INDUCED ARTHRITIS VIA REDUCTION OF THE NUMBER OF OSTEOCLASTS

1G Ascone, 1L Di Ceglie, 1M van den Bosch, 1A Sloetjes, 1P van der Kraan, 1E Lindhout, 1A Blom, 1P van Lent, 1Experimental Rheumatology, Radboud university medical centre, Nijmegen; 2Future Diagnostics Solutions (Fds), Wijchen, Netherlands

Introduction Rheumatoid arthritis (RA) is a chronic inflammatory disease characterised by immune complex (IC) deposition in the synovium, leading to increased bone destruction. In RA, joint destruction has been associated with high levels of low density lipoproteins (LDL) and enhanced LDL oxidation (oxLDL). Apolipoprotein E (ApoE) is an important regulator of LDL transportation and its absence strongly elevates circulating LDL levels, which may lead to increased oxLDL levels during inflammation.

Objectives In this study, we investigated the effects of high LDL levels on bone destruction during antigen-induced arthritis (AIA) and how increased LDL/oxLDL levels affect osteoclast formation.

Methods AIA was induced by injection of methylated BSA (mBSA) into the right knee joint of ApoE−/− and wild type (WT) control mice previously immunised with mBSA and complete Freund’s adjuvant (CFA). WT and ApoE−/− Hoxb8 myeloid precursor cells were differentiated into osteoclasts using 20 ng/mL RANKL and 30 ng/mL M-CSF, then stimulated for 24 hour with 10 µg/mL LDL/oxLDL. Oil Red O staining was performed to assess lipid uptake by osteoclasts. mRNA levels of c-Fos, RANK, NFATc1, DC-STAMP, TRAP, CTR, ClC-7 and Cat K were measured by qPCR. Bone erosion was quantified by histological analysis using an arbitrary scale from 0 to 3 and TRAP+ cells were determined using immunohistochemistry.

Results ApoE−/− mice showed significantly higher LDL serum levels than WT controls. At day 21 after AIA induction, bone erosion was significantly decreased in ApoE−/− mice (23% reduction from 1.5±0.2 to 1.1±0.1). In line with this, the number of osteoclasts within the knee joints was 36% lower in ApoE−/− mice, as determined by image analysis of TRAP staining. To study the role of Apoe and high LDL levels on osteoclastogenesis in more detail, we differentiated WT and Apoe−/− myeloid precursor cells (Hoxb8) into osteoclasts and found similar mRNA levels of osteoclast markers. Whereas LDL stimulation did not affect osteoclast formation, oxLDL strongly impaired cell fusion keeping them in a mononuclear state. mRNA levels of DC-STAMP were significantly downregulated in both WT and Apoe−/− osteoclasts (1.4 and 2.3 fold decrease, respectively) as well as TRAP activity (49% and 58% reduction in WT and Apoe−/− osteoclasts), underlining a major role of oxLDL in inhibiting osteoclastogenesis.