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immune responses. However, the diversity of cells that express 
OX40L is such that a pathogenic mechanism relating the genetic 
findings to disease has not been clearly established. In this study, 
we generated B and CD4+ T cell OX40L conditional knockout 
mice, alongside a complete OX40L knockout, to explore and 
compare the function of OX40L on these cells.

Although a role for OX40L in the T-dependent antibody 
response has been suggested, conflicting results using different 
OX40L-deficient mice have been reported.24 35 These contra-
dictory results may be partly explained by variability in genetic 
background.39 Our conditional knockout mice were on a pure 
C57BL/6 background and, in accord with the one study,24 

Figure 4  OX40L deficiency ameliorates the phenotype of B6.Sle16 lupus-prone mice. Comparison between female B6.Sle16 and B6.Sle16.
Tnfsf4−/− female mice at 9 months of age. (A) Quantitation of spleen/body weight ratio and spleen weight. (B) Absolute number of cells per spleen. 
(C) Serum level of IgG and IgM at 6 and 9 months. (D) Titre of IgM anti-dsDNA and anti-ssDNA. (E) Quantitation of naïve (TN) (CD4+, CD62L+, 
CD44low), (TEFF) effector (CD4+, CD62Llow, CD44low), TEM effector/memory (CD4+, CD62Llow/neg, CD44hi) and TCM central/memory (CD4+, CD62L+, CD44hi) 
T cells expressed as a percentage of CD4+ cells and absolute number. (F) GC TFH cells (CD4+, CXCR5+, PD-1hi) presented as frequency among the 
CD4+ population and absolute number. (G) PD-1 expression level in CD4+ cells assessed by FACS. (H) GC B cell (B220+, GL7+, IgD−) presented as 
frequency among the B220+ population and absolute number. (I) Percentage and absolute number of plasma cells (B220low, CD138hi). Each symbol 
represents an individual mouse. Bars indicate the mean±SEM N.S., not significant; *p<0.05, **p<0.01 and ***p<0.001 (t-test). dsDNA, double-
stranded deoxyribonucleic acid; FACS, fluorescence-activated cell sorting; GC, germinal centre; ssDNA, single-stranded deoxyribonucleic acid. 
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our Tnfsf4−/− mice showed a reduced primary and secondary  
antibody response. However, while the Tnfsf4fl/fl(CD19)−/− 
mice showed the same phenotype as the Tnfsf4−/− mice, the 
Tnfsf4fl/fl(CD4)−/− mice had a normal secondary response, indi-
cating that only OX40L expression by B cells is essential for the 
generation of an effective secondary humoral response and by 
implication B cell memory. We then investigated whether this 
defective humoral response was due to impaired T cell activa-
tion; as expected, Tnfsf4−/− mice showed lower percentage of 
T effector and T effector memory cells (figure  2). The same 
defect, although at a lower extent, was also shown by both  
conditional knockouts, despite the normal secondary response in 
Tnfsf4fl/fl(CD4)−/− mice. These results suggest that B cell OX40L 
may be involved in biological processes that promote memory 
responses that are independent of T cell activation.

T cell-dependent B cell immune response involves both an 
extrafollicular response, which generates short-lived plasma cells 
and an early wave of low-affinity antibody production, and a 
GC response, which gives rise to long-lived plasma or memory 
cells and a later wave of high-affinity antibodies. OX40L has 
been previously suggested to be essential for the development 
of high-affinity Ig-producing plasma cells26; however, no further 
evidence has been subsequently reported. In our study, along-
side an impaired memory response (figure 1C), there were fewer 
plasma cells on day 42 in Tnfsf4−/− and Tnfsf4fl/fl(CD19)−/− mice 
(figure 3B), which suggests that B cell OX40L contributes to an 
effective GC reaction.

We show that Tnfsf4−/− and Tnfsf4fl/fl(CD19)−/− mice have a 
lower percentage of GC TFH, one of the main contributors to 
the GC reaction. The development of mature GC TFH, which 
characteristically expresses CXCR5, along with high levels of the 
surface receptors ICOS, CD40 ligand (CD40L), PD-1 and impor-
tantly OX40,40 41 includes two stages: after activation, a fraction 
of CD4+ T cells migrate towards B cell follicles by upregulating 
the chemokine receptor CXCR5, and these TFH precursors then 
interact with antigen-presenting B cells at the border of the B cell 
follicle and T cell zone and fully maturate into functional GC 
TFH cells.41 In particular OX40L has been shown to be essential 
for the expression of CXCR5 and the consequent migration of 
T cells at the T/B border of B cell follicles,22 42 43 providing the 
first evidence of the role of OX40L in this process. Our results 
corroborate this finding; we found that fewer CXCR5+ T cells 
were generated during the primary response in Tnfsf4−/− and 
Tnfsf4fl/fl(CD19)−/− mice (figure  3E). Whether OX40L-OX40 
signal is responsible for the induction, maturation or mainte-
nance of TFH cells and which cell types expressing OX40L are 
necessary is still unclear; however, a recent work by Tahiliani 
and colleagues44 shows a markedly diminished humoral response 
and production of fewer TFH cells in OX40 KO mice following 
immunisation with vaccinia virus. In particular the authors show 
a direct association between OX40+ TFH cells and OX40L-ex-
pressing DCs and B cells at the T/B borders and GC providing 
supportive evidence to how a sustained OX40L-OX40 signal on 
TFH cells is necessary for the induction of TFH cells and their 

Figure 5  OX40L deficiency diminishes anti-dsDNA antibody production in the cGvHD model. Female wild-type controls, Tnfsf4−/− and 
Tnfsf4(CD19)−/− mice were injected intraperitoneally with 5×107 splenocytes from B6.H2bm12 female mice. Sera were collected on days 14, 28, 42 
and 56. On day 56, spleens were collected and analysed by FACS. (A) Titre of IgG anti-dsDNA in the sera of injected mice at different time points. (B) 
Quantification of naïve (TN) (CD4+, CD62L+, CD44low), (TEFF) effector (CD4+, CD62Llow, CD44low), (TEM) effector/memory (CD4+, CD62Llow/neg, CD44hi) 
and (TCM) central/memory (CD4+, CD62L+, CD44hi) T cells expressed as percentage of CD4+ cells. (C) Quantification of GC TFH cells (CD4+, CXCR5+, 
PD-1hi) presented as frequency among the CD4+ population. (D) Frequency of GC B cells (B220+,GL7+, IgD−) presented as frequency among the 
B220+ population. (E) Percentage of plasma cells (B220low, CD138hi). Each symbol represents data from an individual mouse. Bars indicate the 
mean±SEM. N.S., not significant; *p<0.05, **p<0.01 and ***p<0.001 (one-way analysis of variance). cGvHD, chronic graft-versus-host-disease; 
dsDNA, double-stranded deoxyribonucleic acid; FACS, fluorescence-activated cell sorting; GC, germinal centre.

 on July 1, 2022 by guest. P
rotected by copyright.

http://ard.bm
j.com

/
A

nn R
heum

 D
is: first published as 10.1136/annrheum

dis-2017-211499 on 17 A
ugust 2017. D

ow
nloaded from

 

http://ard.bmj.com/


2102 Cortini A, et al. Ann Rheum Dis 2017;76:2095–2103. doi:10.1136/annrheumdis-2017-211499

Basic and translational research

maturation to maintain a proper GC reaction. In our study, the 
reduced numbers of TFH cells in Tnfsf4−/− and Tnfsf4fl/fl(CD19)−/−  
mice were accompanied by an increase in CXCR5+ PD1low cells 
during the secondary response (figure 3F,G). Since low levels of 
cell-surface PD1 have been shown to characterise TFH precursor 
cells,45 our data suggest a novel role for OX40L on B cells: after 
activation by DCs, immature TFH cells migrate towards the T/B 
borders of the B cells follicles, where activated antigen presenting 
B cells induced their maturation into the GC TFH resident state 
and their maintenance by sustaining OX40L-OX40 signalling.

TNFSF4 has been reproducibly associated with SLE.4 5  A 
recent important study from Jacquemin and colleagues28 demon-
strated that stimulation through OX40  induced T cells to 
express TFH cells-specific genes such as Bcl6 and CXCR5. They 
also observed a positive correlation between disease activity, 
percentage of blood TFH cells and frequency of OX40L+my-
eloid APC, suggesting OX40L-OX40 axis as a contributor factor 
in the aberrant TFH response observed in SLE.46 47 However, the 
ability to study tissue TFH in humans is limited. In our study, 
although in a murine model, the generation of TFH cells in the 
spleen is similarly impeded in the B cell conditional knockout 
and in the germline Tnfsf4 knockout, indicating the importance 
of B cell OX40L. In the human study,28 there was no correla-
tion between blood B cells expressing OX40L and TFH cells. 
However, this lack of correlation could be a consequence of the 
compartmentalisation of activated B cells expressing OX40L in 
the secondary lymphoid organs rather than an evidence of their 
lack of involvement in the development of pathogenic TFH cells 
in SLE.

In our study, to elucidate the role of OX40L in SLE, we used 
two different SLE mouse models, and in particular the GvHD 
model was chosen to investigate the role of OX40L on B cells 
during the B–T cell interaction. In both models of systemic 
autoimmunity, the lack of OX40L-OX40 signalling was associ-
ated with amelioration of the disease phenotype, as shown by a 
reduced production of anti-dsDNA autoantibodies and Ig kidney 
deposition together with reduced numbers of GC TFH (figures 4F 
and 5C) and plasma cells (figures 4I and 5E). These data suggest 
that OX40L supports the expression of the disease phenotype 
as well as autoantibody production. This conclusion is further 
strengthened by the observation that blockade of OX40L reduces 
degree of proteinuria associated with glomerulonephritis in an 
accelerated murine model.48

The results presented in this paper support a mechanism by 
which genetically determined elevated expression of OX40L 
predisposes to SLE via increased B cell expression, which in 
turn supports TFH development. In light of the argument that 
genetic factors augment the likelihood of success with a drug 
target,49 our data strongly support exploration of this thera-
peutic strategy. It is potentially important for optimal treatment 
to know which OX40L-expressing cell types should be targeted, 
and the defined risk alleles at TNFSF4 further raise the possi-
bility that genetic screening may identify individuals most likely 
to benefit from OX40L inhibition.
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