From BLISS to ILLUMINATE studies: “Blys repetita placent”?

Although disappointing, the results of the ILLUMINATE trials are read with great attention.1 2 These trials assessed the efficacy of tabalumab, a B lymphocyte stimulator (Blys) inhibitor, in systemic lupus erythematosus (SLE). Unfortunately, the results were not considered by Lilly worth following the development of this new agent, of the same therapeutic class than belimumab, the first biologic to be labelled in SLE.3 4 Overall, what retained our attention were the similarities between designs and results of ILLUMINATE and BLISS studies, while the fates of the two corresponding drugs were so different (table 1).

Indeed, apart from slight differences in the design concerning the management of standard of care treatments, the inclusion of patients from different countries and the choice of a different cut-off for the outcome criteria, these four studies addressed large populations of patients with SLE with similar characteristics that were evaluated with the same composite outcome measure SLE Responder Index5 and showed only a modest (around 10%) response rate difference between active treatment and placebo. Notably, there were differences between the two ILLUMINATE studies as observed between the two BLISS studies (table 1). A significant effect was reached in ILLUMINATE 2 study only in the high-dose tabalumab arm (120 mg Q2W),2 while in ILLUMINATE 1, a small but not significant effect was observed only with the intermediate dose of tabalumab (120 mg Q4W),1 then failing to confirm the dose effect observed in ILLUMINATE 2.5 The two BLISS studies were considered positive, but, conversely to BLISS 52,3 BLISS 76 showed the benefit of belimumab only in the group receiving the higher dose (10 mg/kg), and the effect observed at week 52 was lost at week 76.6

Table 1 Phase III studies conducted in non-renal patients with SLE targeting Blys

Phase III	N	Type of SLE	Drug	SOC (%)	Corticoids	Antimalarials	Immunosuppressant	Dosages	Anti-dsDNA+ (%)	Administration	Black/Asian (%)	Countries (%)	Endpoint	Response rate, % placebo/dose 1/dose 2 (%)	Delta max (%)	Long-term response rate, placebo/dose 1/dose 2 (%)	Corticoid–sparring effect	Qol	Biological effect	Sensitivity analyses‡‡	
BLISS 52	865	AAN+SLEDAI≥6	Belimumab	96	96	67	42	1 or 10 mg/kg Q4W*	75	–	Intravenous	–	North America	11	44/51/58	14	–	Yes but NCS	SF36 PCS	Yes	Yes
BLISS 76	819	AAN+SLEDAI≥6	Belimumab	76	76	63	56	1 or 10 mg/kg QW**	64	59	Intravenous	38	South America	50	34/41/43	9	–	No	SF36	Yes	Yes
ILLUMINATE 1	1138	AAN+SLEDAI≥6	Tabalumab	78	78	63	43	120 mg Q4W or Q2W1	60	–	Intravenous	14	Europe	11	29.3/35.2/31.8	5.9	25	No	SF36	Yes	Yes
ILLUMINATE 2	1124	AAN+SLEDAI≥6	Tabalumab	73	73	70	40	120 mg Q4W or Q2W1	59	10.7	Intravenous	11	Asia	38	27.7/34.8/38.4	–	–	No	SF36	Yes	Yes

*After two first injections 2 weeks apart.
†After a 240 mg initial dosage.
‡Nearly significant for Q4W.
§Prednisone dose reduced by ≥25% to ≤7.5 mg/day during weeks 40–52.
**Nearly significant for Q2W.
††Not significant for 10 mg/kg.
‡‡Predefined only for ILLUMINATE studies.
AAN, antinuclear antibodies; BFI, Brief Fatigue Inventory; Blys, a B lymphocyte stimulator; Comp−, complement fractions consumption; DNA+, positive DNA antibodies; NCS, not clinically significant; PCS, physical component score; Qol, quality of life; SLE, systemic lupus erythematosus; SLEDAI, Systemic Lupus Erythematosus Disease Activity Index; SOC, standard of care; SRI, SLE Responder Index.
From a pathological perspective, that tabalumab failed where belimumab ‘succeeded’ was unexpected, since Blys blockade by tabalumab was expected to be stronger, due to its effect not only on soluble but also on membrane-bound Blys. As many European lupologists, we continue to use rituximab, a drug that failed phase III studies but showed nice results in various registries, instead of prescribing belimumab, the first biologic with a label obtained with positive phase III studies. Of course, the limited prescription of belimumab is influenced partly by the absence of trials addressing severe forms of SLE (ie, renal), but mainly by authorities that authorised belimumab but at the charge of hospitals in France, or even refused to label belimumab in the UK because of its too modest effect, measured with a dedicated outcome measure derived from a negative phase II study, and the absence of a clear benefit on major secondary endpoints such as quality of life and corticosteroid-sparing effect (table 1).

In this complex context, the fact that tabalumab development programme was ended in spite of very similar effect size may reinforce doubts of the SLE community about the real clinical significance of the results obtained in BLISS studies. It also raises questions on B cell dysregulation in SLE and the exact role of Blys, but also of related molecules such as A proliferation-inducing ligand (APRIL) and their respective effects on B cell subsets. Finally, the results of ILLUMINATE studies should be considered as a starting point to question the drug development model applied in recent years with huge populations and significant p values, but low or absent clinical impact was obtained with expensive new drugs. Importantly, the Blys inhibitors story is not going to end with tabalumab negative trials or the poor development of belimumab in some European countries. Blisibimod, a selective peptibody antagonist of the Blys cytokine, displayed a moderate efficacy in a phase II study, justifying ongoing phase III trials (NCT01395745 and NCT02514967). Furthermore, in response to the negative results of rituximab trials in SLE and of its label and a third (tabalumab), quite similar to the second but that even did not get the chance to get a label.

Laurent Chiche, Noémie Jourde-Chiche, Frederique Retornaz, Divi Conne C
1 Department of Internal Medicine, Hôpital Européen, Marseille, France
2 Department of Nephrology, Aix-Marseille University, AP-HM, Hôpital Conception, UMR_S 1076, Vascular Research Center of Marseille, Marseille, France
3 Service de Rhumatologie, CHRU Brest, and EA2216, INSERM ESPRI, ER29, Université de Brest, Brest, France

Correspondence to Dr Laurent Chiche, Department of Internal Medicine, Hôpital Européen, 6 rue delisée clary, Marseille 13006, France; l.chiche@hopital-europeen.fr

Competing interests None declared.

Provenance and peer review Not commissioned; internally peer reviewed.

Received 1 October 2015
Accepted 2 October 2015
Published Online First 20 October 2015

REFERENCES
10 http://www.has-sante.fr/portail/jcms/c_1234522/en/lenbysta
11 http://www.nice.org.uk/guidance/indevelopment/gid-tag273

http://dx.doi.org/10.1136/annrheumdis-2015-208709

22 http://www.precisesads.eu/
