EXTENDED REPORT

The effect of FTO variation on increased osteoarthritis risk is mediated through body mass index: a mendelian randomisation study

Kalliope Panoutsopoulou,1 Sarah Metrustry,2 Sally A Doherty,3 Laura I Laslett,4 Rose A Maciewicz,5 Deborah J Hart,2 Weiya Zhang,3 Kenneth R Muir,6,7 Margaret Wheeler,3 Cyrus Cooper,8,9 Tim D Spector,2 Flavia M Cicuttini,10 Graeme Jones,4 Nigel K Arden,8,9 Michael Doherty,3 Eleftheria Zeggini,1 Ana M Valdes,2,3 arcOGEN Consortium

ABSTRACT

Objective Variation in the fat mass and obesity-associated (FTO) gene influences susceptibility to obesity. A variant in the FTO gene has been implicated in genetic risk to osteoarthritis (OA). We examined the role of the FTO polymorphism rs8044769 in risk of knee and hip OA in cases and controls incorporating body mass index (BMI) information.

Methods 5409 knee OA patients, 4355 hip OA patients and up to 5362 healthy controls from 7 independent cohorts from the UK and Australia were genotyped for rs8044769. The association of the FTO variant with OA was investigated in case/control analyses with and without BMI adjustment and in analyses matched for BMI category. A mendelian randomisation approach was employed using the FTO variant as the instrumental variable to evaluate the role of overweight on OA.

Results In the meta-analysis of all overweight (BMI ≥ 25) samples versus normal-weight controls irrespective of OA status the association of rs8044769 with overweight is highly significant (OR[95%CI] for allele G=1.14 [1.08 to 1.19], p=7.5×10⁻⁵⁻¹⁷). A significant association with knee OA is present in the analysis without BMI adjustment (OR[95%CI]=1.08 [1.02 to 1.14], p=0.009) but the signal fully attenuates after BMI adjustment (OR[95%CI]=0.99 [0.93 to 1.05], p=0.666). We observe no evidence for association in the BMI-matched meta-analyses. Using mendelian randomisation approaches we confirm the causal role of overweight on OA.

Conclusions Our data highlight the contribution of genetic risk to overweight in defining risk to OA but the association is exclusively mediated by the effect on BMI. This is consistent with what is known of the biology of the FTO gene and supports the causative role of high BMI in OA.

INTRODUCTION

Osteoarthritis (OA) is the most common articular disease in the developed world and a leading cause of chronic disability, mostly as a consequence of knee OA and/or hip OA. A number of studies have shown that obesity represents one of the most important risk factors and it is also a predictor for progression of OA, especially of the knee joint and less of the hip joint. There is a strong and highly significant relationship between body mass index (BMI) and OA of the knee. The relationship with hip OA is less striking but is still highly statistically significant⁡ and obesity is one of the strongest prognostic factors for large joint OA.⁴

The protein encoded by FTO has been described as a Fe(II)-oxoglutarate-dependent oxygenase and 2-oxoglutarate-dependent oxygenase that might operate as a DNA demethylase. The human FTO gene is expressed in many tissues including mesenteric fat, pancreas, liver and adipose tissue, with the highest concentrations found in the hypothalamus.⁶ Experimental animal studies provide direct functional evidence that FTO underlies obesity.⁸ Two studies have demonstrated that FTO gene expression in the arcuate nucleus of the hypothalamus is regulated by fasting,⁷ suggesting that FTO may be important to the control of energy homeostasis.

A recent GWAS on hip and/or knee OA has identified a variant in the FTO gene, rs8044769, as being strongly associated with risk of OA.¹¹ Because of the study design, the authors were not able to test thoroughly whether the association between FTO and OA was mediated by obesity or not. GWAS for type 2 diabetes (T2D) detected strong association between common SNPs in the FTO region and risk of T2D.⁶ ¹² ¹³ However, subsequent analyses showed that the association between FTO SNPs and T2D was mediated by an association with BMI.⁶

There has been a lot of debate in the literature recently about the role of FTO in OA pathogenesis and specifically about the direction of causation between obesity and OA.¹⁴ ¹⁵ Mendelian randomisation, a form of instrumental variable analysis, is a
method of using measured variation in genes of known function to examine the causal effect of a modifiable exposure on disease in non-experimental studies.16 The main elements for it to work (having removed the effect of confounders) are that the genetic variant should be reliably associated with the exposure, in this case overweight status, and that there should be no direct effect of genotype on disease or any other mediated effect other than through the exposure of interest. In our study we find that these conditions apply to the relationship between FTO, overweight and OA.

The aim of the present study is to elucidate the role of rs8044769 in genetic risk of OA by testing this SNP in seven independent study cohorts from the UK and Australia with BMI information comprising in total 5409 knee OA patients, 4355 hip OA patients and 5362 healthy individuals. We explore the causality and direction of the relationship between overweight status and OA using the FTO polymorphism as the instrumental variable in a mendelian randomisation analysis.

PATIENTS AND METHODS

We examined genotypes for rs8044769 in knee or hip OA cases and controls with BMI information coming from seven independent studies (table 1 and see online supplementary methods). These comprised: a subset of knee or hip OA cases from the arcOGEN GWAS versus disease-free controls from TwinsUK, and individuals from the Chingford Study, the Hertfordshire Cohort Study (HCS), the Nottingham Case-Control Study, the Genetics of Osteoarthritis and Lifestyle study, the TwinsUK study and the Tasmanian Older Adult Cohort (TASOAC) study.5 11 17-22 Cases had either radiographic evidence of the disease with a Kellgren-Lawrence (KL) grade ≥2 or clinical evidence of the disease to a level requiring total joint replacement. Controls were disease-free individuals with KL<2. Individuals from the arcOGEN, Chingford, TwinsUK and the Nottingham cohort with full GWAS information have been subjected to standard GWAS quality control including removal of ethnic outliers. The HCS includes only individuals of self-reported Caucasian origin from within the Hertfordshire county, and TASOAC individuals included in this study are all of self-reported British origin and of white ethnicity (see online supplementary methods). Ethical approval for each study was obtained from the relevant ethical committees and all participants gave written informed consent.

We carried out case/control logistic regression analyses for rs8044769 under the multiplicative model (adjusting for gender and BMI were applicable by including them in the model as covariates) and combined summary statistics in a meta-analysis framework (see online supplementary methods). To evaluate the association of the FTO variant with risk of overweight/obese we classified all overweight/obese samples as cases and normal weight subjects as controls in each cohort (irrespective of OA status). For the BMI-matched analyses, we stratified the OA hip or knee cases and the controls into three categories for each cohort according to BMI: normal weight ≤25, overweight and obese >25 and obese only >30.

RESULTS

We analysed genotypes for rs8044769 across a total of 936 normal weight, 2092 overweight and 2381 obese knee OA patients versus 2501 normal weight, 1984 overweight and 877 obese controls and of 1201 normal weight, 1758 overweight and 1396 obese hip OA patients versus 2315 normal weight, 1804 overweight and 848 obese controls in seven independent cohorts from the UK and Australia (table 1). First, we investigated the association of the FTO variant with risk of obesity in a case/control analysis of all overweight/obese samples (n=10 538) versus normal weight controls (n=4598) irrespective of OA status and found that to be highly significant. Allele G at rs8044769 was associated with risk of obesity (BMI≥25) with an OR[CIs]=1.14 [1.01 to 1.19], p=7.5×10−7 and no heterogeneity was observed between studies (heterogeneity index, I²=0). We then examined the strength of association of rs8044769 with knee or hip OA across all OA cases versus controls in each cohort (adjusted for gender) and repeated the analyses adjusting for BMI. A significant association of the FTO variant with knee OA only was detected in the meta-analysis without BMI adjustment (OR[CIs]=1.08 [1.01 to 1.14], p=0.009) (table 2). The effect of this variant on knee OA is slightly larger and more significant in the analysis of the two genders combined but it appears to be mainly driven by females (see online supplementary table S1) with OR in females=1.07.

Table 1 Descriptive characteristics of the study cohorts

<table>
<thead>
<tr>
<th>Study</th>
<th>Country of origin</th>
<th>OA status</th>
<th>Definition</th>
<th>N</th>
<th>F (%)</th>
<th>BMI±SD [kg/m²]</th>
<th>Age±SD [yrs]</th>
<th>Controls (OA unaffected)</th>
<th>Definition</th>
<th>N</th>
<th>F (%)</th>
<th>BMI±SD [kg/m²]</th>
<th>Age±SD [yrs]</th>
</tr>
</thead>
<tbody>
<tr>
<td>arcOGEN</td>
<td>UK</td>
<td>Hip</td>
<td>KL≥2 or THR</td>
<td>1310</td>
<td>100</td>
<td>28.4±5.8</td>
<td>64.7±9.1</td>
<td>KL<2</td>
<td>1671</td>
<td>100</td>
<td>25.3±4.8</td>
<td>56.8±13.8</td>
<td></td>
</tr>
<tr>
<td>arcOGEN</td>
<td>UK</td>
<td>Knee</td>
<td>KL≥2 or THR</td>
<td>1209</td>
<td>100</td>
<td>30.6±6.3</td>
<td>66.0±8.7</td>
<td>KL<2</td>
<td>1671</td>
<td>100</td>
<td>25.3±4.8</td>
<td>56.8±13.8</td>
<td></td>
</tr>
<tr>
<td>Chingford</td>
<td>UK</td>
<td>Hip</td>
<td>KL≥2 or THR</td>
<td>97</td>
<td>100</td>
<td>25.0±3.9</td>
<td>66.0±5.6</td>
<td>KL<2</td>
<td>677</td>
<td>100</td>
<td>24.6±3.5</td>
<td>63.1±5.7</td>
<td></td>
</tr>
<tr>
<td>Chingford</td>
<td>UK</td>
<td>Knee</td>
<td>KL≥2 or THR</td>
<td>100</td>
<td>100</td>
<td>27.1±4.6</td>
<td>65.7±5.9</td>
<td>KL<2</td>
<td>677</td>
<td>100</td>
<td>24.6±3.5</td>
<td>63.1±5.7</td>
<td></td>
</tr>
<tr>
<td>GOAL</td>
<td>UK</td>
<td>Hip</td>
<td>KL≥2 or THR</td>
<td>1291</td>
<td>100</td>
<td>29.4±5.13</td>
<td>67.8±7.2</td>
<td>KL<2</td>
<td>788</td>
<td>97</td>
<td>27.1±4.4</td>
<td>62.7±8.4</td>
<td></td>
</tr>
<tr>
<td>GOAL</td>
<td>UK</td>
<td>Knee</td>
<td>KL≥2 or THR</td>
<td>1619</td>
<td>100</td>
<td>30.7±5.4</td>
<td>68.5±7.1</td>
<td>KL<2</td>
<td>788</td>
<td>97</td>
<td>27.1±4.4</td>
<td>62.7±8.4</td>
<td></td>
</tr>
<tr>
<td>HSC</td>
<td>UK</td>
<td>Hip</td>
<td>KL≥2 or THR</td>
<td>148</td>
<td>100</td>
<td>29.4±5.1</td>
<td>65.2±6.2</td>
<td>KL<2</td>
<td>555</td>
<td>89</td>
<td>26.2±3.7</td>
<td>64.8±6.2</td>
<td></td>
</tr>
<tr>
<td>Nottingham</td>
<td>UK</td>
<td>Knee</td>
<td>KL≥2 or THR</td>
<td>1525</td>
<td>63.2</td>
<td>27.7±4.7</td>
<td>68.5±9.2</td>
<td>KL<2</td>
<td>750</td>
<td>56</td>
<td>26.6±3.9</td>
<td>66.3±9.0</td>
<td></td>
</tr>
<tr>
<td>Nottingham</td>
<td>UK</td>
<td>Knee</td>
<td>KL≥2 or THR</td>
<td>1780</td>
<td>55.3</td>
<td>29.7±5.3</td>
<td>69.0±8.8</td>
<td>KL<2</td>
<td>750</td>
<td>56</td>
<td>26.6±3.9</td>
<td>66.3±9.0</td>
<td></td>
</tr>
<tr>
<td>TASOAC</td>
<td>Australia</td>
<td>Hip</td>
<td>KL≥2</td>
<td>44</td>
<td>65.1</td>
<td>29.4±5.4</td>
<td>65.4±7.5</td>
<td>KL<2</td>
<td>696</td>
<td>50</td>
<td>27.4±4.5</td>
<td>62.3±7.4</td>
<td></td>
</tr>
<tr>
<td>TASOAC</td>
<td>Australia</td>
<td>Knee</td>
<td>KL≥2</td>
<td>239</td>
<td>49.8</td>
<td>29.3±5.2</td>
<td>67.3±7.3</td>
<td>KL<2</td>
<td>657</td>
<td>46</td>
<td>27.4±4.5</td>
<td>62.3±7.4</td>
<td></td>
</tr>
<tr>
<td>TwinsUK</td>
<td>UK</td>
<td>Hip</td>
<td>KL≥2 or THR</td>
<td>88</td>
<td>100</td>
<td>26.0±4.6</td>
<td>57.4±8.0</td>
<td>KL<2</td>
<td>385</td>
<td>100</td>
<td>24.3±4.1</td>
<td>50.3±6.7</td>
<td></td>
</tr>
<tr>
<td>TwinsUK</td>
<td>UK</td>
<td>Knee</td>
<td>KL≥2 or THR</td>
<td>148</td>
<td>100</td>
<td>28.1±5.3</td>
<td>58.8±7.5</td>
<td>KL<2</td>
<td>385</td>
<td>100</td>
<td>24.3±4.1</td>
<td>50.3±6.7</td>
<td></td>
</tr>
</tbody>
</table>

GOAL, Genetics of Osteoarthritis and Lifestyle; TASOAC, Tasmanian Older Adult Cohort.
[1.00–1.15], p=0.049, I²=0.54 versus OR in males=1.04[0.94–
1.14], p=0.47, I²=0, which is in accordance with the finding
reported in the arcOGEN GWAS. Adjusting for age as well as BMI did not make a noticeable difference in these results (table 2). We further investigated the FTO association by performing a large-scale meta-analysis across all case/control datasets matched for BMI but observed no evidence for association in any of the BMI strata studied (table 3). The power of our meta-analyses to detect an association between the FTO variant rs8044769 and OA is sufficient (>90%) for the knee and hip strata (table 2) but ranges from 0.34 to 0.80 for the hip and knee BMI-stratified analyses (table 3).

We further investigated the direction of causation between overweight status and OA using a mendelian randomisation approach and we computed the summary effect of rs8044769 on overweight status, which results in an OR=1.13[1.07–1.19], (p=1×10⁻⁶), and of overweight status on risk of knee OA and hip OA (table 2). Overweight status in the current study samples results in an OR=3.30[3.02–3.62] for knee OA and OR=2.00 [1.82–2.21] for hip OA. We then estimated the expected effect of the G allele on risk of knee OA if the effect on OA is due to the effect of rs8044769 on overweight, which would result in OR=1.16. This value is higher than the upper CI for the observed effect (OR=1.08[1.02–1.14]). The observed effect for hip OA (OR=1.04 [0.98–1.11]) is similar to the expected effect (OR=1.09) of rs8044769.

DISCUSSION

Variation in the FTO gene is associated with obesity although the exact mechanism by which FTO functions in obesity has not been elucidated. A recent study by the arcOGEN Consortium established an association of rs8044769 at the BMI-associated gene FTO and knee and/or hip OA reaching almost genome-wide signficance in the female stratum. FTO demonstrated expression within OA joint tissues (cartilage, tendon, ligament, meniscus, synovium, fat pad and osteophyte) and control fracture neck-of-

Table 2 Meta-analysis summary statistics for the association of allele G at rs8044769 with hip or knee OA

<table>
<thead>
<tr>
<th>OA site</th>
<th>Covariates</th>
<th>N cases/controls *F.E. OR (95% CIs)</th>
<th>F.E. p value</th>
<th>R.E. OR (95% CIs)</th>
<th>R.E. p value</th>
<th>t q p value</th>
<th>§I²</th>
<th>¶Power</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hip</td>
<td>Sex</td>
<td>4355/4967</td>
<td>1.04 (0.98 to 1.11)</td>
<td>0.170</td>
<td>1.04 (0.97 to 1.12)</td>
<td>0.287</td>
<td>0.328</td>
<td>0.13</td>
</tr>
<tr>
<td>Hip</td>
<td>Sex, BMI</td>
<td>4355/4967</td>
<td>1.00 (0.94 to 1.08)</td>
<td>0.936</td>
<td>0.98 (0.90 to 1.08)</td>
<td>0.749</td>
<td>0.166</td>
<td>0.36</td>
</tr>
<tr>
<td>Hip</td>
<td>Sex, BMI, age</td>
<td>4258/4788</td>
<td>1.00 (0.94 to 1.08)</td>
<td>0.97</td>
<td>1.00 (0.93 to 1.08)</td>
<td>0.929</td>
<td>0.312</td>
<td>0.16</td>
</tr>
<tr>
<td>Knee</td>
<td>Sex</td>
<td>5409/5362</td>
<td>1.08 (1.02 to 1.14)</td>
<td>0.009</td>
<td>1.08 (1.00 to 1.16)</td>
<td>0.056</td>
<td>0.138</td>
<td>0.38</td>
</tr>
<tr>
<td>Knee</td>
<td>Sex, BMI</td>
<td>5409/5362</td>
<td>0.99 (0.93 to 1.05)</td>
<td>0.666</td>
<td>0.99 (0.93 to 1.05)</td>
<td>0.704</td>
<td>0.338</td>
<td>0.12</td>
</tr>
<tr>
<td>Knee</td>
<td>Sex, BMI, age</td>
<td>5228/5183</td>
<td>0.96 (0.90 to 1.03)</td>
<td>0.298</td>
<td>0.97 (0.90 to 1.05)</td>
<td>0.484</td>
<td>0.227</td>
<td>0.26</td>
</tr>
</tbody>
</table>

*F.E. Fixed effects.
†R.E. Random effects.
‡Power has been calculated for α=0.05, risk allele frequency=0.5 and effect size=1.1, as estimated in the arcOGEN replication only GWAS.
§I² Heterogeneity index.
¶Power has been calculated for α=0.05, risk allele frequency=0.5 and effect size=1.1, as estimated in the arcOGEN replication only GWAS.

Table 3 Meta-analysis summary statistics for the association of allele G at rs8044769 with hip or knee OA across the three BMI strata (normal BMI<25, overweight/obese: BMI≥25, obese: BMI≥30)

<table>
<thead>
<tr>
<th>OA site</th>
<th>Stratum</th>
<th>N cases/controls *F.E. OR (95% CIs)</th>
<th>F.E. p value</th>
<th>R.E. OR (95% CIs)</th>
<th>R.E. p value</th>
<th>t q p value</th>
<th>§I²</th>
<th>¶Power</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hip</td>
<td>Normal-weight</td>
<td>1201/2315</td>
<td>1.08 (0.96 to 1.19)</td>
<td>0.190</td>
<td>1.03 (0.88 to 1.21)</td>
<td>0.691</td>
<td>0.105</td>
<td>0.45</td>
</tr>
<tr>
<td>Hip</td>
<td>Overweight/obese</td>
<td>3154/2652</td>
<td>0.97 (0.88 to 1.06)</td>
<td>0.486</td>
<td>0.97 (0.87 to 1.09)</td>
<td>0.602</td>
<td>0.293</td>
<td>0.19</td>
</tr>
<tr>
<td>Hip</td>
<td>Obese</td>
<td>1396/848</td>
<td>1.01 (0.88 to 1.15)</td>
<td>0.399</td>
<td>0.98 (0.73 to 1.31)</td>
<td>0.891</td>
<td>0.007</td>
<td>0.68</td>
</tr>
<tr>
<td>Knee</td>
<td>Normal weight</td>
<td>936/2501</td>
<td>1.00 (0.90 to 1.12)</td>
<td>0.961</td>
<td>0.98 (0.83 to 1.15)</td>
<td>0.804</td>
<td>0.086</td>
<td>0.46</td>
</tr>
<tr>
<td>Knee</td>
<td>Overweight/obese</td>
<td>4473/2861</td>
<td>1.01 (0.93 to 1.08)</td>
<td>0.888</td>
<td>1.01 (0.93 to 1.08)</td>
<td>0.883</td>
<td>0.412</td>
<td>0.02</td>
</tr>
<tr>
<td>Knee</td>
<td>Obese</td>
<td>2381/877</td>
<td>0.97 (0.87 to 1.09)</td>
<td>0.603</td>
<td>0.97 (0.79 to 1.19)</td>
<td>0.777</td>
<td>0.017</td>
<td>0.61</td>
</tr>
</tbody>
</table>

*F.E. Fixed effects.
†R.E. Random effects.
‡Power has been calculated for α=0.05, risk allele frequency=0.5 and effect size=1.1, as estimated in the arcOGEN replication only GWAS.
§I² Heterogeneity index.
¶Power has been calculated for α=0.05, risk allele frequency=0.5 and effect size=1.1, as estimated in the arcOGEN replication only GWAS.
follow-up the association of the variant that showed the strongest evidence for association with OA in the arcOGEN GWAS.11

In this study, we have investigated whether rs8044769 is associated with hip or knee OA independently of BMI by performing a large-scale meta-analysis across seven cohorts enabling us to increase the sample size by 55% knee OA cases, 57% hip OA cases and 69% of controls over the discovery study. This gave us sufficient power to perform analyses stratified by joint, joint and gender, and by joint and BMI category, unlike the original report, which examined BMI adjustment in females only. We find no evidence for association between this variant and OA consistent with what is known about the role of the FTO gene product, namely, that it is likely to be important to the control of energy homeostasis. As such, it is difficult to envisage a direct influence on the development of a joint pathology like OA except through its role on body mass.

The data presented here can be interpreted in the context of mendelian randomisation supporting the causal role of overweight on OA. Although the association between BMI and OA is well known, it could be a comorbidity that accompanies the disease.14 15 The genetic results shown by our study indicate that, on the one hand, overweight appears to be indeed causative of OA as we find an association between OA and FTO, which is fully accounted for by the role of FTO on overweight and disappears once we adjust for BMI or for BMI stratum. Furthermore, the observed and expected associations between FTO and hip OA are very similar. On the other hand, we observe a larger correlation between overweight on knee OA than what can be explained merely if overweight is causative of knee OA suggesting that there may be synergistic effects between overweight and knee OA due to, for example, lifestyle factors or lack of mobility. Hence, although overweight may be a cause of OA, the comorbidity and lack of mobility that results from knee OA may be resulting in further risk of overweight.

We note some study limitations. First, the statistical power of the current study to detect association of the FTO SNP and OA is sufficient in the overweight stratum (73%–80%) but is modest for the normal weight and obese strata (34%–47%). Thus, we cannot exclude the possibility that a very modest association may be present among normal weight individuals, which our study failed to detect. On the other hand, overweight individuals constitute the majority of OA cases and represent over 70% of the total joint replacement cases.2 The fact that our study finds no evidence of association with FTO in the overweight stratum despite being sufficiently-powered, suggests no direct implication of the FTO gene in susceptibility to OA. We also note that our study has combined both OA cases from population-based cohorts and severe OA cases from case/control studies recruited via secondary care (see online supplementary methods). However, we believe that this does not present a limitation of the current study because in the arcOGEN GWAS the FTO variant was more strongly associated when all cases (ascertained either by radiography or by total joint replacement) were included in the analysis.11

In summary, unlike the original report of the FTO association with OA, which was able to adjust for BMI only on a modest subset of female cases and controls, the present study gives a definitive answer showing that the effect of this variant on OA is solely due to its effect on BMI. Moreover, having tested the association in the context of mendelian randomisation, the results in this report indicate that overweight is on the causal pathway to OA rather than the inverse, although OA-induced inactivity may also be having an adverse effect on knee OA.

Author affiliations
1Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, UK
2Department of Twin Research, King’s College London, St Thomas’ Hospital, London, UK
3Academic Rheumatology, Nottingham City Hospital, Nottingham, UK
4Menzies Research Institute Tasmania, University of Tasmania, Hobart, Australia
5Respiratory & Inflammation iMed, AstraZeneca, Mölndal, Sweden
6Centre for Epidemiology, Institute of Population Health, The Medical School, University of Manchester, Manchester, UK
7Health Sciences Research Institute, Warwick Medical School, University of Warwick, Coventry, UK
8NHRI Musculoskeletal Biomedical Research Unit, University of Oxford, Oxford, UK
9MRC Lifecourse Epidemiology Unit, University of Southampton, Southampton General Hospital, Southampton, UK
10Department of Epidemiology and Preventive Medicine, School of Public Health and Preventive Medicine, Monash University, Alfred Hospital, Melbourne, Australia

Contributors All authors contributed to the study design, data interpretation and the final manuscript. In addition GJ, LLI, SAD, MD, TS, NKA and MW evaluated study subjects. AMV and KP analysed and interpreted the data and prepared the manuscript. AMV supervised the study.

Funding EU Commission FP7. This work was supported by EC framework 7 programme grant 200800 TREAT-OA. Tasmanian Community Fund; Masonic Centenary Medical Research Foundation, Royal Hobart Hospital Research Foundation, and University of Tasmania. Institutional Research Grants Scheme.

Competing interests EZ, KP are funded by the Wellcome Trust (098051). KP is funded by Arthritis Research UK (19542). arcOGEN was funded by a special purpose grant from Arthritis Research UK (18030). The TASOAC study was supported by the National Health and Medical Research Council of Australia; Arthritis Australia; Laura Laslet is supported by an Arthritis Australia Postdoctoral Award. Graeme Jones is supported by a National Health and Medical Research Council practitioner fellowship.

Ethics approval Each of the participating studies obtained approval from the appropriate ethics committee.

Provenance and peer review Not commissioned; externally peer reviewed.

Open Access This is an Open Access article distributed in accordance with the Creative Commons Attribution Non Commercial (CC BY-NC 3.0) license, which permits others to distribute, remix, adapt, build upon this work non-commercially, and license their derivative works on different terms, provided the original work is properly cited and the use is non-commercial. See: http://creativecommons.org/licenses/by-nc/3.0/

REFERENCES
5 Fawcett KA, Barroso I. The genetics of obesity: FTO leads the way. Trends Genet 2010;26:266–74.

SUPPLEMENTARY TEXT

SUPPLEMENTARY METHODS

Study cohorts

arcOGEN study. The arcOGEN cases used in this analysis are part of a GWAS that was carried out in two stages and includes a total of 7410 OA cases collected from several locations in the United Kingdom and genotyped on the Illumina HumanHap 610-Quad panel. The characteristics of the full arcOGEN GWAS dataset have been described in detail elsewhere,[1]. Briefly, subjects were unrelated and of European origin. The majority of cases (~80%) were ascertained by clinical evidence of the disease to a level requiring total joint replacement with the remainder having radiographic evidence of OA (ROA) with a Kellgren-Lawrence (K/L) grade ≥2. From the arcOGEN dataset we have excluded cases coming from the Nottingham and Chingford collections and of male gender because of the availability of female only controls with BMI info. The resulting dataset comprised 1310 cases with hip OA and 1209 cases with knee OA. We used 1671 unrelated female individuals from the OA-free TwinsUK cohort genotyped on the Illumina HumanHap 610-Quad panel as a control set. This cohort is ascertained to study the heritability of age-related diseases and contains full phenotypic information for OA status as well as age and BMI,[2]. Genotyping and QC of this dataset have been described elsewhere,[1].

Chingford Study. This study is a prospective population-based longitudinal cohort, which includes women derived from the age/sex register of a large general practice in North London. The study design and rationale have been described elsewhere in detail,[3]. The Guy’s St. Thomas’ Trust and the Waltham Forest Trust ethics committees approved the study protocol. After study procedures were explained to participants, written informed consent was given by each participant. OA was classified radiologically using standard X-rays of the pelvis, thoracolumbar spine, hands and weight-bearing knees,[4]. Hip OA was defined as definite joint space narrowing (JSN) and knee OA as at least one definite osteophyte and definite JSN or at least two definite osteophytes. Severe hip OA and knee OA were defined as a K/L score ≥ 3 or a total joint replacement (TJR).

Hertfordshire Cohort Study (HCS). The HCS is a population-based cohort study of men and women born and still resident in Hertfordshire designed to investigate the relationship between growth in infancy and the development of adult disease,[5]. In the late 1990s, 3000 men and women were recruited to this study which included a home interview and a subgroup (498 men and 468 women) underwent knee X-rays. Ethical approval was obtained from East and North Hertfordshire ethical committees and all participants gave written informed consent. Weight bearing anteroposterior and lateral semi-flexed radiographs of both knees were taken at the same hospital using the same radiographic equipment; a standard tube to film distance of 100 cm was used,[5]. Knee OA was defined as K/L≥2 at the tibiofemoral compartment.

Nottingham Case-Control Study. All individuals were affected by knee or hip OA and were recruited in Nottingham both from families with a history of OA and from clinic populations,[6]. Hip and knee OA cases were recruited from hospital orthopaedic surgery lists. All had been referred to the hospital with symptomatic, clinically severe hip or knee OA and the majority had undergone
unilateral or bilateral THR or TKR within the previous 5 years. Pre-operative knee or pelvis radiographs were examined to confirm the diagnosis. Subjects were excluded if they had another major arthropathy, Paget’s disease, overt child hip disease, THR due to trauma or terminal illness. Controls were age-matched individuals from the same catchment area free from radiographic OA and over the age of 55. All research participants gave written informed consent to take part. Approval for recruitment of index knee and hip OA cases and siblings of index hip OA cases was obtained from the research ethics committees of Nottingham City Hospital and North Nottinghamshire. For further details see [6].

Genetics of Osteoarthritis and Lifestyle (GOAL) study. Recruitment criteria were the same as for the Nottingham case-control study. Cases with clinically severe knee OA were recruited from hospital orthopaedic surgery TKR lists in the Nottingham area as previously described,[7]. Approval for recruitment was obtained from the research ethics committees of Nottingham City Hospital and North Nottinghamshire. Knee and hip radiographs were examined to confirm the diagnosis and to grade for changes of OA and scored for individual radiographic features of OA by a single observer and graded 0-3 according to a standard atlas using the K/L grade for each joint. Only individuals of European descent were included in the genetic study. Subjects aged 45-85 who had undergone intravenous urography (IVU) in the same hospital were recruited.

TwinsUK study. The study participants were white monozygotic and dizygotic twin pairs from the TwinsUK adult twin registry, a group used to study the heritability and genetics of age-related diseases,[2]. Ethics approval was obtained from the Guy’s and St. Thomas’ Hospital Ethics Committee. Written informed consent was obtained from every participant. Samples included in this study were a subset over the age of 40 who had pelvis and anteroposterior weight-bearing knee X-rays. Only one individual from each twin pair was included. Hip OA was defined as definite joint space narrowing (JSN) and knee OA as at least two definite osteophytes and possible JSN. Severe hip OA and knee OA were defined as a K/L score ≥ 3 or a total joint replacement.

The Tasmanian Older Adult Cohort (TASOAC) study. This is an ongoing prospective, population-based study that was initiated in 2002 and was aimed at identifying the environmental, genetic, and biochemical factors associated with the development and progression of OA at multiple sites (hand, knee, hip, and spine). Subjects between the ages of 50 and 80 years were randomly selected from the electoral roll in Southern Tasmania (population 229,000), with an equal number of men and women. The study was approved by the Southern Tasmanian Health and Medical Human Research Ethics Committee, and all subjects provided informed written consent. The overall response rate was 57%. Subjects who were institutionalized were excluded from the study. Total knee replacement was also an exclusion criterion. Details on the radiographic and pain assessment have been described elsewhere,[8]. Briefly, a standing anteroposterior semiflexed view of the right knee with 15° of fixed knee flexion was performed at baseline in all subjects. Radiographs were assessed and scored for osteophytes (OP) and joint space narrowing (JSN) on a scale of 0–3 (0 = normal, 3 = severe) according to the Osteoarthritis Research Society International (OARSI) atlas. Bilateral pelvis X-rays were also taken for all subjects and OP and JSN features were scored. A K/L score was computed using the OP and JSN scores for both hip and knee radiographs. Controls were individuals with no knee ROA and no hip ROA. 98 % of subjects reported being of white or Caucasian ethnicity. Those of other ethnicities were not included in this genetic study.
Data analysis

We carried out logistic regression analysis for rs8044769 under the multiplicative model (adjusting for gender and BMI where applicable) in each cohort using PLINK,[9]. We used a meta-analysis framework to combine summary statistics across all cohorts implemented in GWAMA,[10]. Combined estimates of ORs for reference alleles were obtained by weighting the logORs of each study by the inverse of their variance using a fixed effects model. We investigated evidence of heterogeneity of ORs using the Cochran’s Q and I² statistics,[11]. We additionally assessed the combined results using a random effects meta-analysis model. To evaluate the association of the FTO variant with risk of overweight/obese we classified all overweight/obese samples as cases and normal-weight subjects as controls in each cohort (irrespective of OA status). For the BMI-matched analyses we stratified the OA hip or knee cases and the controls into 3 categories for each cohort according to BMI: normal weight ≤25, overweight and obese >25, obese only >30. We carried out logistic regression analyses and meta-analyses for rs8044769 across the BMI-matched case/control datasets. BMI adjustment was carried out in all hip OA or knee OA cases vs controls by including BMI as a covariate in the logistic regression.

Power calculations were performed using Quanto,[12]. Power was calculated separately for the number of hip and knee individuals in each meta-analysis and separately for the number of hip and knee individuals across the 3 different BMI categories for alpha=0.05, effect size=1.1, and risk allele frequency= 0.5 as estimated in the arcOGEN replication only GWAS,[1].

SUPPLEMENTARY REFERENCES

Table S1. Meta-analysis summary statistics for the association of allele G at rs8044769 with hip or knee OA stratified by sex.

<table>
<thead>
<tr>
<th>OA site</th>
<th>Sex</th>
<th>Covariates</th>
<th>N cases/controls</th>
<th>F.E. OR (95% CIs)</th>
<th>F.E. p-value</th>
<th>R.E. OR (95% CIs)</th>
<th>R.E. p-value</th>
<th>q p-value</th>
<th>I²</th>
<th>Power</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hip</td>
<td>Male</td>
<td>None</td>
<td>1238/1065</td>
<td>0.98 (0.86-1.12)</td>
<td>0.79</td>
<td>0.98 (0.86-1.12)</td>
<td>0.79</td>
<td>0.70</td>
<td>0</td>
<td>0.36</td>
</tr>
<tr>
<td>Hip</td>
<td>Male</td>
<td>BMI</td>
<td>1238/1065</td>
<td>0.98 (0.86-1.11)</td>
<td>0.72</td>
<td>0.98 (0.86-1.11)</td>
<td>0.72</td>
<td>0.59</td>
<td>0</td>
<td>0.36</td>
</tr>
<tr>
<td>Hip</td>
<td>Female</td>
<td>None</td>
<td>3117/3902</td>
<td>0.98 (0.93-1.03)</td>
<td>0.46</td>
<td>1.02 (0.89-1.17)</td>
<td>0.74</td>
<td>0.006</td>
<td>0.76</td>
<td>0.81</td>
</tr>
<tr>
<td>Hip</td>
<td>Female</td>
<td>BMI</td>
<td>3117/3902</td>
<td>1.05 (0.97-1.13)</td>
<td>0.25</td>
<td>1.05 (0.97-1.13)</td>
<td>0.25</td>
<td>0.69</td>
<td>0</td>
<td>0.81</td>
</tr>
<tr>
<td>Knee</td>
<td>Male</td>
<td>None</td>
<td>1863/1359</td>
<td>1.04 (0.94-1.14)</td>
<td>0.47</td>
<td>1.04 (0.94-1.14)</td>
<td>0.47</td>
<td>0.78</td>
<td>0</td>
<td>0.47</td>
</tr>
<tr>
<td>Knee</td>
<td>Male</td>
<td>BMI</td>
<td>1863/1359</td>
<td>1.03 (0.93-1.13)</td>
<td>0.62</td>
<td>1.03 (0.93-1.13)</td>
<td>0.62</td>
<td>0.85</td>
<td>0</td>
<td>0.47</td>
</tr>
<tr>
<td>Knee</td>
<td>Female</td>
<td>None</td>
<td>3546/4003</td>
<td>1.07 (1.00-1.15)</td>
<td>0.049</td>
<td>1.06 (0.94-1.19)</td>
<td>0.38</td>
<td>0.07</td>
<td>0.54</td>
<td>0.83</td>
</tr>
<tr>
<td>Knee</td>
<td>Female</td>
<td>BMI</td>
<td>3546/4003</td>
<td>1.01 (0.94-1.09)</td>
<td>0.76</td>
<td>1.01 (0.94-1.09)</td>
<td>0.76</td>
<td>0.42</td>
<td>0</td>
<td>0.83</td>
</tr>
</tbody>
</table>

1 F.E. Fixed effects
2 R.E. Random effects
3 q p-value Cochran’s heterogeneity statistic’s p-value
4 Heterogeneity index

5 Power has been calculated for alpha=0.05, risk allele frequency=0.5 and effect size=1.1, as estimated in the arcOGEN replication only GWAS,[1]