Conclusions Blood eosinophils in patients with SSC display a diverse phenotype depending on disease duration. In early disease, surface marker expression on eosinophils is associated with disease activity and severity.

A2.13 PHENOTYPIC AND MOLECULAR PROFILE OF INNATE LYMPHOID CELLS IN CHRONIC SYNOVIAL INFLAMMATION
1O Boyer, 2T Lequerré, 2O Vittecoq.1,*C Guillou, 2G Avenel, 1C Derambure, 2M Verdet, 1ML Golinski, 1M Hiron, 1S Adriouch, 1O,Baeten, 2Hereng Spits. Department of Clinical Immunology and Rheumatology, 2Tytgat Institute for Liver and Intestinal Research, Academic Medical Center/University of Amsterdam, Amsterdam, The Netherlands

Background and Objective Innate lymphoid cells (ILCs) represent a novel family of effector and regulatory cells in innate immunity and tissue remodelling. The family comprises several phenotypically and functionally distinct subsets that produce various cytokines such as IL-22, IL-17, IFN-γ, TNE, IL-13 and IL-5, of which many have been shown to be important in arthritis pathogenesis.

The IL-17 and IL-22 producing ILCs are of major interest as they are implicated in chronic gut inflammation. Based on the broad clinical overlap between inflammatory bowel disease and spondyloarthritis (SpA) and the clinical importance of IL-17 in SpA we hypothesise that IL-17 and IL-22 producing ILCs contribute to inflammation and remodelling in SpA synovitis. As these cells have never been described in the joint our first aim was to characterise ILC in chronic inflammatory arthritis.

Material and Methods ILCs (lineage negative, CD45+CD127+) were analysed and sorted by flow cytometry from synovial tissue and fluid from rheumatoid arthritis (RA) and SpA patients as well as in blood from SpA patients and healthy donors. mRNA expression of sorted and expanded cells was analysed by qPCR.

Results ILCs were identified in blood as well as in synovial tissue and fluid from both RA and SpA patients. The frequency of ILCs was higher in the inflamed joint (0.5–3.5% of the lymphocyte population) than in the peripheral blood compartment (0.1%). In blood, there was no marked difference in the frequency of the different ILC subset between healthy controls (n=10) and SpA patients (n=5). In the inflamed joint, the ILC3 (CRTH2-NKp44+ckit+) and ILC1 (CRTH2-NKp44-ckit–) populations, previously shown to express IL-22 and IFNγ respectively in other tissues, were present in all samples whereas the Th2 cytokine expressing ILC2s (CRTH2+) were found in very low frequencies. Frequencies of ILC subpopulations varied considerably between patients and no differences could be detected between RA and SpA patients. qPCR analysis of expanded cells revealed that ILC1 expressed TBX21 whereas ILC3 expressed RORC. Accordingly, stimulated ILC3 expressed transcripts for both IL-23R and IL-22 but not IL-17.

Conclusions ILC1 and ILC3 are present in the chronically inflamed joint and express the key transcription factors associated with specific cytokine profiles. These data indicate that ILC could contribute to local cytokine-driven immune alterations in SpA and RA.

A2.15 RELATIVE OVEREXPRESSION OF TRANSMEMBRANE VERSUS SOLUBLE TNF IN HUMAN AND EXPERIMENTAL SPONDYLOARTHITIS
doi:10.1136/annrheumdis-2013-203215.15
Leonie M van Duvenvoorde, Carmen A Ambarus, Huriatul Masdar, Melissa N van Tol, Paul P Tak, Nataliya G Yeremenko, Dominique L Baeten. Department of Clinical Immunology and Rheumatology, Department of Experimental Immunology, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands

Background Macrophages and their pro-inflammatory cytokines, including TNF, are pivotal mediators of chronic synovitis in rheumatoid arthritis (RA) as well as spondyloarthritis (SpA). Despite similar levels of synovial macrophage infiltration and similar clinical responses to TNF blockade in both diseases, SpA is characterised by a more pronounced infiltration with alternatively activated CD163+ macrophages and ongoing osteoproliferation. This study aimed to investigate whether these differences were related to a differential expression and/or function of TNF between both diseases.

Methods Expression of transmembrane TNF (tmTNF) and soluble TNF (sTNF) was measured in IFN-γ, IL-4 or IL-10 polarised macrophages obtained from healthy donors. Expression of TNF and its receptors was measured in synovial fluid (SF) and synovial tissue biopsies (ST) of actively inflamed knee joints of SpA and RA patients. Mice transgenically overexpressing tmTNF (TgA86) were evaluated for spondylitis and arthritis.