Background and Objectives The interleukin (IL)-36 family consists of six members (IL-36α, IL-36β, IL-36γ, IL-36ε, IL-36δ, and IL-36r1). These cytokines are produced by various cell types and are involved in the regulation of immune responses. The IL-36 family plays a crucial role in the pathogenesis of psoriasis and other inflammatory diseases. The aim of this study was to investigate the expression and function of the IL-36 family in rheumatoid arthritis (RA) synovial tissue.

Materials and Methods Synovial tissue samples were obtained from patients with RA who underwent joint replacement surgery. The tissue samples were immediately frozen in liquid nitrogen and stored at -80°C until analysis. The IL-36 family mRNA levels were determined using quantitative real-time polymerase chain reaction (qRT-PCR). Immunohistochemical analysis was performed to examine the expression of the IL-36 family in synovial tissue.

Results The expression of the IL-36 family was significantly upregulated in RA synovial tissue compared to normal tissue. The IL-36α and IL-36β levels were particularly high, while the expression of IL-36γ, IL-36δ, and IL-36r1 was lower. These findings suggest that the IL-36 family may play a significant role in the pathogenesis of RA.

Conclusions The upregulation of the IL-36 family in RA synovial tissue suggests that these cytokines may be potential targets for therapeutic interventions. Further studies are needed to elucidate the exact role of the IL-36 family in the pathogenesis of RA and to develop effective therapeutic strategies.

References

