**A10.14 **IDENTIFICATION OF NOVEL ACPA TARGETS IN RHEUMATOID ARTHRITIS SYNOVIAL TISSUES USING 2D GEL ELECTROPHORESIS AND MASS SPECTROMETRY

1E Ossipova, 1G Oliynyk, 1C Cerqueira, 1S Becker, 1J Ytterberg, 1G Auer, 2I Klarenkov, 2P Jakobsson. 1Department of Medicine, Unit of Rheumatology, Karolinska University Hospital, Stockholm, Sweden; 2Department of Microbiology, Tumor and Cell Biology, Karolinska Institute, Stockholm, Sweden, 2Department of Oncology-Pathology, Karolinska University Hospital, Stockholm, Sweden; 3Department of Medical Biochemistry and Biophysics, Karolinska Institute, Stockholm, Sweden

Background and Objectives Rheumatoid arthritis (RA) is an inflammatory autoimmune disease characterised by synovial joint inflammation and pannus formation that leads to degradation of cartilage and the underlying bone. Presence of anti-citrullinated protein/peptide antibodies (ACPA) in 60–70% of patients with RA is one of the major characteristics of the disease and associates with a more aggressive disease course, suggesting a direct pathogenic involvement of ACPA in disease initiation and progression. ACPA recognises several citrullinated proteins like fibrinogen, α-enzyme, vimentin, and collagen II. In this study, we aim for the identification of novel ACPA targets in synovial tissues of patients with RA.

Materials and Methods RA synovial tissues were obtained from patients undergoing joint replacement surgery for rheumatoid arthritis of the knee or elbow at the Karolinska University Hospital, Stockholm, Sweden. Synovial tissues were frozen in liquid nitrogen shortly after resection and stored at –80°C. All procedures were approved by Northern Stockholm Ethical Review Board and tissues were obtained with informed patient consent. Proteins, extracted from pulsed frozen synovial tissues and solubilised in lysis buffer, were resolved in 2D PAGE. Separated proteins were directly transferred to a nitrocellulose membrane and probed with human ACPA pool obtained using CCP2 affinity columns, kindly provided by Euro-Diagnostica, as described previously. [1] Human IgG and CCP2 flow-through fraction were used as control antibodies. Silver stained gel spots, corresponding to WB signals, were extracted from 2D gels, in-gel digested using Lys-C, and resulting peptides were identified using mass spectrometry.

Results By combining 2D gel electrophoresis with mass spectrometry, we have identified several novel potential ACPA targets as well as already characterised proteins. It remains to demonstrate if these proteins are citrullinated.

Conclusions Here we demonstrate an extensive ACPA reactivity against novel proteins in RA synovial membranes. The results encourage further exploration of the role of these proteins/peptides in rheumatoid arthritis both as additional biomarkers as well as their potential roles in the pathogenesis of RA.

Reference

**A10.15 **IGA RHEUMATOID FACTOR IS MORE PREDOMINANT THAN ANTI-CCP IN SUDANESE RHEUMATOID ARTHRITIS PATIENTS. WHEREAS IGG RF IS A STRONG PROGNOSTIC MARKER AND ASSOCIATED WITH EARLY ONSET

doi:10.1136/annrheumdis-2013-203224.15

1,2Amir I Elshafie, 1Sahwa Nourein, 1Vivek Anand Manivel, 1Azita Sohrabian, 1Mawahib IE Eldrisi, 1Elhore M Elbag, 1Musaa AM Nasr, 1Johan Rönnelid. 1Department of Immunology, Genetics and Pathology, Uppsala University, Uppsala, Sweden; 2Department of Pathology and Microbiology, Alribat University Hospital, Khartoum, Sudan; 2Karhum Fertility Center, Khartoum, Sudan; 2Rheumatology Unit, Alribat University Hospital, Khartoum, Sudan; 2Rheumatology Unit, Military Hospital, Omdurman, Sudan

Background and Objectives The aim was to investigate the diagnostic and prognostic impact of the conventionally used autoantibodies (IgG anti-CCP and IgM rheumatoid factor (RF) as well as IgA and IgG RF in the first ever collected cohort of Sudanese rheumatoid arthritis (RA) patients.

Materials and Methods 264 consecutive RA patients (87% females) diagnosed according to the 1987 ACR criteria attending two rheumatology centres in Khartoum between December 2008 and September 2010 were included, together with 168 healthy Sudanese blood donor controls. Autoantibody levels were investigated in Uppsala, and RF specificity levels aligned to the anti-CCP specificity (97.6%).

Results Anti-CCP was elevated in 52% (131/252) of the patients, a figure not different from what has been found in Sweden (57%, Rönnelid ARD 2005; p = 0.2). Among the Sudanese RA patient, 57.2%, 51% and 49.8% had IgA, IgM and IgG RF, respectively. The areas under the Receiver Operator Characteristics (ROC) curves were 0.94 for anti-CCP, and 0.95, 0.82 and 0.85 for IgA, IgG and IgM RF, respectively.

IgG RF was associated with young age (p = 0.0005) and lower age of disease onset (p < 0.0001), as well as with higher total number of affected joints (p = 0.03). Hand deformities like swan neck deformity (p = 0.0001) and boutonnière deformity (p = 0.02) were also primarily associated with IgG RF. Association with the other investigated autoantibodies were weaker or absent. The prognostic impact of IgG RF was not secondarily dependent on anti-CCP, as the correlation between anti-CCP was stronger for IgM RF (r = 0.49) and IgG RF (r = 0.51) than for IgG RF (r = 0.23).

Conclusions The occurrence of anti-CCP in Sudanese RA patients does not differ from Sweden. In contrary to what has been found in Caucasian RA populations, IgA RF is a diagnostically more sensitive marker than anti-CCP. IgG RF is the strongest marker for bad prognosis, and associated with early disease onset.

**A10.16 **INFLAMMATORY CYTOKINES DOWNREGULATE FoxO1 BY JNK-DEPENDENT ACCELERATION OF MRNA DEGRADATION TO PROMOTE SURVIVAL AND PROLIFERATION OF RHEUMATOID ARTHRITIS FIBROBLAST-LIKE SYNVOIYCITES

doi:10.1136/annrheumdis-2013-203224.16

1AM Grabies, 1C Angiolli, 1LM Hartkamp, 1LM van Baarsen, 1PP Tak, 1DL Baeten, 1KA Reedquist. 1Department of Experimental Immunology and Department of Clinical Immunology and Rheumatology, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands; 2Currently also: GlaxoSmithKline, Stevenage, UK

Background and Objectives aberrant regulation of proliferation and survival of immune and stromal cells contributes to the pathogenesis of rheumatoid arthritis (RA). Forkhead box O (FoxO) transcription factors integrate extracellular signals to modulate expression of genes regulating cell cycle and apoptosis, and alterations in activity and expression of FoxO have been reported in several inflammatory diseases, including RA. In this study, we examined the relationships between inflammation and FoxO expression in RA, and analysed the mechanisms and biological consequences of cytokine-mediated regulation of FoxO1 expression in RA fibroblast-like synoviocytes (FLS).

Materials and Methods RNA was isolated from synovial biopsies obtained by arthroscopy from 20 RA patients and expression of FoxO1, FoxO3a, FoxO4 and IL-6 was measured by quantitative PCR (qPCR). FoxO1 DNA binding, FoxO1 expression and mRNA stability were measured by ELISA-based assays and qPCR in RA FLS stimulated with IL-1β, TNFα, or IL-17 in the absence or presence of mitogen-activated protein kinase (MAPK) or protein kinase B (PKB) inhibitors. RA FLS were transduced with adenovirus encoding control GFP or constitutively active FoxO1/ADA to examine the effects on cell viability and gene expression.