Background and Objectives Rheumatoid arthritis (RA) is an inflammatory autoimmune disease characterised by synovial joint inflammation and pannus formation that leads to degradation of cartilage and the underlying bone. Presence of anti-citrullinated protein/peptide antibodies (ACPA) in 60–70% of patients with RA is one of the major characteristics of the disease and associates with a more aggressive disease course, suggesting a direct pathogenic involvement of ACPA in disease initiation and progression. ACPA recognizes several citrullinated proteins like fibrinogen, α-enolase, vimentin, and collagen II. In this study, we aim for the identification of novel ACPA targets in synovial tissues of patients with RA.

Materials and Methods RA synovial tissues were obtained from patients undergoing joint replacement surgery for rheumatoid arthritis of the knee or elbow at the Karolinska University Hospital, Stockholm, Sweden. Synovial tissues were frozen in liquid nitrogen shortly after resection and stored at –80°C. All procedures were approved by Northern Stockholm Ethical Review Board and tissues from plasma and synovial fluids of patients with rheumatoid arthritis both as additional biomarkers as well as encourage further exploration of the role of these proteins/peptides.

Results CCP2 flow-through fraction were used as control antibodies. Silver staining followed by Western blots demonstrated that the ACPA pool obtained using CCP2 affinity columns, kindly provided by Euro-Diagnostica, as described previously. Human IgG and IgM RF were used as positive controls in all the experiments. ACPA pool used as control antibodies. Silver stained gel spots, corresponding to WB signals, were extracted from 2D gels, in-gel digested using Lys-C, and resulting peptides were identified using mass spectrometry.

Results By combining 2D gel electrophoresis with mass spectrometry, we have identified several novel potential ACPA targets as well as already characterised proteins. It remains to demonstrate if these proteins are citrullinated.

Conclusions Here we demonstrate an extensive ACPA reactivity against novel proteins in RA synovial membranes. The results encourage further exploration of the role of these proteins/peptides in rheumatoid arthritis both as additional biomarkers as well as their potential roles in the pathogenesis of RA.

Reference

Background and Objectives The aim was to investigate the diagnostic and prognostic impact of the conventionally used autoantibodies (IgG anti-CCP and IgM rheumatoid factor (RF)) as well as IgA and IgG RF in the first ever collected cohort of Sudanese rheumatoid arthritis (RA) patients.

Materials and Methods 264 consecutive RA patients (87% females) diagnosed according to the 1987 ACR criteria attending two rheumatology centres in Khartoum between December 2008 and September 2010 were included, together with 168 healthy Sudanese blood donor controls. Autoantibody levels were investigated in Uppsala, and RF specificity levels aligned to the anti-CCP specificity (97.6%).

ResultsAnti-CCP was elevated in 52% (131/252) of the patients, a figure not different from what has been found in Sweden (57%, Rönnelid ARD 2005; p = 0.2). Among the Sudanese RA patient, 57.2%, 51% and 49.8% had IgA, IgM and IgG RF respectively. The areas under the Receiver Operator Characteristics (ROC) curves were 0.94 for anti-CCP, and 0.95, 0.82 and 0.85 for IgA, IgG and IgM RF, respectively.

IgG RF was associated with young age (p = 0.0005) and lower age of disease onset (p < 0.0001), as well as with higher total number of affected joints (p = 0.03). Hand deformities like swan neck deformity (p = 0.0001) and boutonnière deformity (p = 0.02) were also primarily associated with IgG RF. Association with the other investigated autoantibodies were weaker or absent. The prognostic impact of IgG RF was not secondarily dependent on anti-CCP, as the correlation between anti-CCP was stronger for IgM RF (r = 0.49) and IgG RF (r = 0.51) than for IgG RF (r = 0.25).

Conclusions The occurrence of anti-CCP in Sudanese RA patients does not differ from Sweden. In contrary to what has been found in Caucasian RA populations, IgA RF is a diagnostically more sensitive marker than anti-CCP. IgG RF is the strongest marker for bad prognosis, and associated with early disease onset.

Background and Objectives ACPA reactivity against novel proteins in RA synovial membranes. The results encourage further exploration of the role of these proteins/peptides in rheumatoid arthritis both as additional biomarkers as well as their potential roles in the pathogenesis of RA.

Reference

Background and Objectives The aim was to investigate the diagnostic and prognostic impact of the conventionally used autoantibodies (IgG anti-CCP and IgM rheumatoid factor (RF)) as well as IgA and IgG RF in the first ever collected cohort of Sudanese rheumatoid arthritis (RA) patients.

Materials and Methods 264 consecutive RA patients (87% females) diagnosed according to the 1987 ACR criteria attending two rheumatology centres in Khartoum between December 2008 and September 2010 were included, together with 168 healthy Sudanese blood donor controls. Autoantibody levels were investigated in Uppsala, and RF specificity levels aligned to the anti-CCP specificity (97.6%).

Results Anti-CCP was elevated in 52% (131/252) of the patients, a figure not different from what has been found in Sweden (57%, Rönnelid ARD 2005; p = 0.2). Among the Sudanese RA patient, 57.2%, 51% and 49.8% had IgA, IgM and IgG RF respectively. The areas under the Receiver Operator Characteristics (ROC) curves were 0.94 for anti-CCP, and 0.95, 0.82 and 0.85 for IgA, IgG and IgM RF, respectively.

IgG RF was associated with young age (p = 0.0005) and lower age of disease onset (p < 0.0001), as well as with higher total number of affected joints (p = 0.03). Hand deformities like swan neck deformity (p = 0.0001) and boutonnière deformity (p = 0.02) were also primarily associated with IgG RF. Association with the other investigated autoantibodies were weaker or absent. The prognostic impact of IgG RF was not secondarily dependent on anti-CCP, as the correlation between anti-CCP was stronger for IgM RF (r = 0.49) and IgG RF (r = 0.51) than for IgG RF (r = 0.25).

Conclusions The occurrence of anti-CCP in Sudanese RA patients does not differ from Sweden. In contrary to what has been found in Caucasian RA populations, IgA RF is a diagnostically more sensitive marker than anti-CCP. IgG RF is the strongest marker for bad prognosis, and associated with early disease onset.