The colocalisation between CD3ζ and SLAP were measured by laser confocal microscopy. CD3ζ mRNA was measured by quantitative real-time RT-PCR, IL-2 level was measured by ELISA.

Results In vitro TNF treatment of human T cells selectively, dose dependently and reversibly downregulates CD3ζ-chain expression and inhibits activation-induced IL-2 expression ($p < 0.01$). Inhibition of the proteasome prevented the effect of TNF on CD3ζ-chain expression. The colocalization of SLAP with CD3ζ-chain and the SLAP expression were enhanced by TNF treatment ($p < 0.01$ and $p < 0.05$, respectively). TNF silencing with small interfering RNA inhibited the TNF-induced CD3ζ-chain downregulation. SLAP levels of the CD4 T cells, isolated from patients with rheumatoid arthritis were higher than that of the healthy donors’ ($p < 0.05$). In addition, in vitro TNF treatment did not alter the SLAP expression of the CD4 lymphocytes of anti-TNF therapy-treated RA patients.

Conclusions Our present data suggest that TNF regulates T cell activation during inflammatory processes, by altering CD3ζ-chain expression via a SLAP-dependent mechanism. Thereafter SLAP-dependent regulation of CD3ζ-chain may have an important role in the fine control of TCR signalling during chronic inflammation. SLAP may have a role in the pathomechanism of RA.

A3.22 **UPREGULATED MICRONNA-182 EXPRESSION IS ASSOCIATED WITH ENHANCED CONVENTIONAL CD4+ T CELL PROLIFERATION IN SLE**

doi:10.1136/annrheumdis-2013-203216.22

1Tobias Alexander, 2Claudia Haftmann, 2Lars Templin, 1Jens Humrich, 2Gerd-Rüdiger Burmester, 1Andreas Radbruch, 1Falk Hiepe, 1Mar-Farzin Mashreghi. 1Medical Department, Division of Rheumatology and Clinical Immunology, Charité – University Medicine Berlin, Germany; 2German Rheumatism Research Center (DZHK), Berlin, Germany

Background Recent reports have shown dysregulated microRNAs (miRNAs) in murine models of lupus, among them increased expression of miRNA-182, which has been demonstrated to target the transcription factor FOXO1 in activated murine CD4+ T cells. The loss of FOXO1 activity in T cells is associated with spontaneous T cell activation, clonal expansion and autoantibody production, all of which are present in systemic lupus erythematosus (SLE).

Methods Expression levels of microRNA-182 (miR-182) and FOXO1 were analysed with RT-PCR in freshly isolated and magnetic purified peripheral blood CD4+ T cells from 9 patients with SLE and age/sex-matched healthy controls (HC). Multicolor flow cytometry was performed to analyse CD4+ T cell expression for CCR7, CD45RA, Ki-67, Foxp3, the interleukin-7 receptor-α (CD127) and phosphorylated STAT-5a (pSTAT5). Analysis of serum IL-7 levels was performed with ELISA in 27 SLE patients and HC (R&D Systems). The Wilcoxon signed-rank test was used for statistical analysis.

Results MiRNA-182 was significantly upregulated in CD4+ T cells from SLE patients compared to HC (median relative expression 8.89 × 10E-7 versus 3.96 × 10E-7, $p = 0.008$) while FOXO1 mRNA levels were decreased, yet without reaching statistical significance. Analysis of Ki-67 expression revealed an increased percentage of proliferating CD4+ T cells in SLE (5.25% versus 2.21%, $p = 0.006$), which was more prominent in Foxp3- conventional T cells (Teons) than in Foxp3+ regulatory T cells (Tregs). Overall, CD4+ T cell proliferation in SLE was associated with increased frequencies of CD45RA-C/CCR7 effector memory T cells and enhanced basal pSTAT5 levels (median MFI 505.5 versus 399.0, $p = 0.010$), suggesting a recent stimulation with common gamma chain (γc)-signalling cytokines. In this regard, Teons from SLE samples displayed decreased expression levels for the FOXO1 target gene CD127 (MFI 2021 versus 2553, $p = 0.049$) and serum IL-7 levels were significantly higher in SLE when compared to HC (17.0 pg/ml versus 10.2 pg/ml, $p = 0.001$).

Conclusions MiR-182 expression has been shown to be directly dependent on STAT5 activation and to promote the clonal expansion of murine activated CD4+ T cells. Our data suggest that enhanced IL-7R/STAT5 signalling presumably mediates the induction of miR-182 expression, which in turn promotes the proliferation of Teons in SLE. The relative contribution of IL-7R/miR-182/FOXO1 axis on the enhanced proliferative capacity of SLE Teons remains elusive and merits further investigation. Collectively, our data provide new insights in the pathophysiology of T cell hyperactivity in SLE and identifies miR-182 as a candidate target for future therapeutic approaches.

A3.21 TNFα INFLUENCES RasGRP1 AND RasGRP3 EXPRESSION LEVELS IN PBMC, B AND T CELLS

doi:10.1136/annrheumdis-2013-203216.21

1ML Golinski, 1M Hiron, 1C Guitton, 1C Derambure, 1O Boyer, 1X Le Loët, 1O Vittecoq, 2T Lequerré. 1INSERM U905, Institute for Biomedical Research, University of Rouen, Rouen, France; 2Department of Rheumatology, Rouen University Hospital & INSERM U905, Institute for Biomedical Research, University of Rouen, Rouen, France

Background Rheumatoid arthritis (RA) is the most common inflammatory arthritis. B and T lymphocytes play a central role in the pathophysiology of RA. RasGRP is a member of the CDC25 family of Ras guanyl nucleotide exchange factors. RasGRP1 is expressed in T and B cells whereas RasGRP3 is only expressed in B cells. In previous studies, we have shown that RasGRP3 expression level significantly decreased in Peripheral blood mononuclear cells (PBMC) from RA patients responders to adalimumab after 3 months, leading to the question of TNFα involvement in pathways including RasGRP1 and RasGRP3.

Objectives To study TNFα effects on RasGRP1 and RasGRP3 expression levels in vitro.

Methods We measured by qRT-PCR, RasGRP1 and RasGRP3 expression levels, i) in PBMC from 3 healthy controls (HC), ii) in negative selected B and T cells from PBMC isolated from 3 buffy coat. In each condition, cells were cultured with or without BCR or TCR stimulation for 4 days and TNFα was added for 24 or 48 hours. Immunofluorescence staining was performed to check the cell purity and B and T cells stimulation by flow cytometry. To test the functional effects of RasGRP1 and RasGRP3 overexpression in T and B cells respectively, IL-2 production was measured by ELISA in T-cells, and Elk-1 expression level was measured by qRT-PCR in B cells before and after TNFα stimulation. In addition, TNFα effects on cell proliferation were evaluated by [3H] thymidine incorporation by the B and T cells.

Results In B cells, TNFα induced an increase of RasGRP1 ($p < 0.001$) and RasGRP3 ($p < 0.001$) expression levels in absence of BCR stimulation. In the same way, in T cells, TNFα induced an increase of RasGRP1 ($p < 0.001$) and RasGRP3 ($p < 0.001$) expression levels in absence of TCR stimulation. Furthermore, TNFα induced a significantly increase of IL-2 production ($p < 0.05$) in unstimulated T cells and of Elk-1 expression level ($p < 0.01$) in unstimulated B cells. However, TNFα have no effects on B and T cells proliferation.

Conclusions This study suggests the RasGRP1 and RasGRP3 regulation by TNFα, independently of B and T cells stimulation. The increasing of RasGRP3 and RasGRP1 in B and T cells specifically via TNFα binding on its receptors could promote the activation and proliferation of B and T cells by an independent antigen pathway. This second pathway could explain the maintenance of B and T cells activation.