Confirmation of association of the REL locus with rheumatoid arthritis susceptibility in the UK population

Genome-wide association studies (GWAS) have contributed to the identification of at least 14 rheumatoid arthritis (RA) susceptibility loci. One of the first RA GWAS included 1522 cases and 1850 controls from the USA/Sweden and identified TRAF1/C5 as a novel RA locus. This GWAS was recently repeated after including an additional 1550 cases and 3310 controls from the USA and restricting analysis to US subjects. In the expanded sample, two novel single nucleotide polymorphisms (SNP) mapping to the REL locus showed association with RA. REL encodes c-Rel, a member of the nuclear factor kappa B family of transcription factors and one of the associated SNP (rs13031237) maps to an intron of this gene. The association was validated in an independent sample of 2604 RA cases and 2882 controls from the USA/Canada, with strong evidence for association in the combined samples (rs13031237, p=3.1×10^{-14}). We aimed to test the association of the same variants with RA in a large UK case–control sample.

White patients with RA were recruited from six centres across the UK, with ethical committee approval (MREC 99/8/84) and after providing informed consent. Genotyping was performed using Sequenom, and only samples and SNP exceeding 90% success rate were included in the subsequent analysis. Genotype frequencies were compared between cases and controls using the trend test implemented in PLINK.

DNA samples from 3962 RA cases and 3531 controls were available for testing, and the clinical characteristics have been described previously. The two SNP, rs13031237 and rs13017599, strongly associated with RA in the previous US/Canadian study were genotyped in the UK samples and both SNP showed strong evidence for association, with no deviation from Hardy–Weinberg expectations (table 1). In the previous study, the subjects investigated were overwhelmingly positive for autoantibodies. We, therefore, undertook subgroup analysis in autoantibody-positive groups. The strength of association was stronger in anticyclic citrullinated peptide antibody positive, rheumatoid factor-positive and autoantibody-positive subgroups compared with the overall group. A meta-analysis of data from the previous US/Canadian sample and the current UK group was undertaken and increased the strength of evidence for association to 1.7×10^{-17} (figure 1).

In this large sample, we provide confirmation of association of the REL locus with RA in a UK population. The associated markers map 28.5 kb apart on chromosome 2p in UK RA cases and controls and association of SNP in subgroups stratified by autoantibody status.

Table 1 Genotype counts and frequencies for SNP mapping to chromosome 2p in UK RA cases and controls and association of SNP in subgroups stratified by autoantibody status

<table>
<thead>
<tr>
<th>Case, n (%)</th>
<th>rs13031237</th>
<th>rs13017599</th>
</tr>
</thead>
<tbody>
<tr>
<td>2/2</td>
<td>508 (14.9)</td>
<td>507 (14.8)</td>
</tr>
<tr>
<td>1/2</td>
<td>1674 (49.0)</td>
<td>1672 (48.9)</td>
</tr>
<tr>
<td>1/1</td>
<td>1234 (36.1)</td>
<td>1239 (36.2)</td>
</tr>
<tr>
<td>Control, n (%)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2/2</td>
<td>350 (12.7)</td>
<td>352 (12.8)</td>
</tr>
<tr>
<td>1/2</td>
<td>1271 (46.2)</td>
<td>1270 (46.1)</td>
</tr>
<tr>
<td>1/1</td>
<td>1128 (41.1)</td>
<td>1133 (41.1)</td>
</tr>
<tr>
<td>Case–control comparison</td>
<td></td>
<td></td>
</tr>
<tr>
<td>p-Trend</td>
<td>5.26×10^{-5}</td>
<td>6.96×10^{-5}</td>
</tr>
<tr>
<td>Allelic OR (95% CI)</td>
<td>1.16 (1.08 to 1.25)</td>
<td>1.16 (1.08 to 1.25)</td>
</tr>
<tr>
<td>RF+ (n=2370) vs controls (n=2758)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>p-Trend</td>
<td>2.83E-06</td>
<td>3.91E-06</td>
</tr>
<tr>
<td>Allelic OR (95% CI)</td>
<td>1.21 (1.12 to 1.31)</td>
<td>1.21 (1.11 to 1.31)</td>
</tr>
<tr>
<td>RF− (n=784) vs controls (n=2758)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>p-Trend</td>
<td>0.37</td>
<td>0.42</td>
</tr>
<tr>
<td>Allelic OR (95% CI)</td>
<td>1.06 (0.94 to 1.19)</td>
<td>1.05 (0.93 to 1.18)</td>
</tr>
<tr>
<td>Anti-CCP− (n=1184) vs controls (n=2758)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>p-Trend</td>
<td>2.12E−05</td>
<td>2.67E−05</td>
</tr>
<tr>
<td>Allelic OR (95% CI)</td>
<td>1.24 (1.12 to 1.37)</td>
<td>1.23 (1.12 to 1.36)</td>
</tr>
<tr>
<td>Anti-CCP+ (n=433) vs controls (n=2758)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>p-Trend</td>
<td>0.34</td>
<td>0.41</td>
</tr>
<tr>
<td>Allelic OR (95% CI)</td>
<td>0.83 (0.80 to 0.88)</td>
<td>0.94 (0.81 to 1.09)</td>
</tr>
<tr>
<td>RF− (n=784) vs controls (n=2758)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>p-Trend</td>
<td>7.11×10^{-7}</td>
<td>1.01×10^{-6}</td>
</tr>
<tr>
<td>Allelic OR (95% CI)</td>
<td>1.22 (1.12 to 1.31)</td>
<td>1.21 (1.12 to 1.31)</td>
</tr>
</tbody>
</table>

Figure 1 Meta-analysis of current UK data with previous data. US and US/Canadian allele counts from Gregersen et al. Combined p value=1.53×10^{-17}. OR, odds ratio.
different genetic loci compared with autoantibody-negative disease. However, it should be noted that the number of autoantibody-negative samples included in studies is often quite small.

In summary, we provide confirmatory support for the association of the REL locus with RA. Fine mapping and functional studies will be required to identify the causal variant(s) and inform our understanding of how these variants influence the pathogenesis of RA.


1arc-Epidemiology Unit, Manchester Academy of Health Sciences, The University of Manchester, Manchester, UK
2School of Medicine and Biomedical Sciences, Sheffield University, Sheffield, UK
3NIHR-Leeds Musculoskeletal Biomedical Research Unit, Leeds Institute of Molecular Medicine, University of Leeds, Leeds, UK
4Clinical and Academic Rheumatology Department, Kings College Hospital NHS Foundation Trust, London, UK
5Musculoskeletal and Genetics Section, Division of Applied Medicine, University of Aberdeen, Aberdeen, UK
6University of Oxford Institute of Musculoskeletal Sciences, Botnar Research Centre, Oxford, UK

Correspondence to Dr Anne Barton, arc-Epidemiology Unit, Stopford Building, Manchester Academy of Health Sciences, The University of Manchester, Oxford Road, Manchester M13 9PT, UK; anne.barton@manchester.ac.uk

Acknowledgements The authors would like to thank the Arthritis Research Campaign for their support (arc grant reference no 17552). They also acknowledge support from the NIHR Manchester Biomedical Research Centre, the NIHR Oxford Musculoskeletal Biomedical Research Centre and the NIHR Leeds Musculoskeletal Biomedical Research Unit.

Ethics approval This study was conducted with the approval of the North West Regional Ethics Committee (MREC 98/8/84).

Provenance and peer review Not commissioned; externally peer reviewed.

Patient consent Obtained.

Accepted 8 November 2009


REFERENCES

A diagnostic algorithm for
et al. JE
correct affiliations for Professor P Emery, for all of the below articles, are: 1Section of Musculoskeletal Disease, Leeds Institute of Molecular Medicine, University of Leeds; 2NIHR Leeds Musculoskeletal Biomedical Research Unit, Leeds Teaching Hospitals Trust, Leeds, UK.


