HLA-DR-DQ haplotypes and genotypes in Finnish patients with rheumatoid arthritis

We read with great interest the paper by Laivoranta-Nyman et al. They studied Finnish patients with rheumatoid arthritis (RA) and controls, and suggested that there exist susceptibility, neutral, and protective HLA-DR-DQ haplotypes that do not match the predictions of current hypotheses for the mechanism of association of the HLA class II region and RA.

The analysis performed, however, does not take into account the effect of marked over-representation of some HLA-DRB1 alleles among the cases on the relative frequencies of other alleles in the cases and controls. We believe that this is the reason for the unexpected findings. If a relative predispositional effects model is used, which does take this bias into account, it can be seen that the results are quite different (table 1).

We have called alleles “significant” if they achieved a Bonferroni corrected p value of <0.05, correcting for 21 alleles (equivalent to an uncorrected p value of <0.0024). This analysis shows that five haplotypes are over-represented:

- (DRB1*0401-DQA1*03-DQB1*0301);
- (DRB1*0408-DQA1*03-DQB1*0301);
- (DRB1*0401-DQA1*03-DQB1*0302);
- (DRB1*0101-DQA1*01-DQB1*0501),

and that all other haplotypes are not significantly different from neutral (p_correct >0.2). All these haplotypes have previously been shown to be associated with RA, and carry the HLA-DRB1 shared epitope.

These findings do not support either the Zanelli/rheumatoid arthritis protection model, or the model proposed by de Vries et al., as no protective haplotypes were observed. The lack of support for these models may represent type II error, and the question of the protective effect of DRB1*0103 has not been dealt with because the DRB1*1 subtype was not further subdivided. None the less, in general, the results are most consistent with the shared epitope hypothesis.

Our analysis agrees with the finding that different DRB1*0401-DQ haplotypes have different strengths of disease association.

This is consistent with previous studies, which demonstrate differential association of major histocompatibility complex (MHC) class III-DRB1*0401 haplotypes with RA (reviewed by Newton et al). What the true disease associated gene is on these haplotypes is as yet unknown, but the findings of Laivoranta-Nyman et al strongly support the existence of further MHC genes influencing RA.

S Harney, B P Wordsworth, M A Brown
University of Oxford Institute of Musculoskeletal Sciences, Bohmar Research Centre, Oxford, UK

Correspondence to: Professor M A Brown, mbrown@wall.ox.ac.uk

References


Authors’ reply

We thank Dr Harney and collaborators for their interest and comments on our recent paper.1 We agree that the use of the relative predispositional effects method in clarifying the primary and secondary associations.

When dealing with less common haplotypes, and especially when applied to genotype analysis, the statistical power of the method is, however, limited. One possibility would of course have been to classify haplotypes based on the presence of shared epitope and DERAA motif, which might have given a significant protective effect also using the RPE method. We decided primarily to group haplotypes simply based on their increase or decrease among patients without any preassumptions of mechanisms, although we called the haplotype groups susceptibility and protective. This grouping was further used to search for genotype effects and its correlation with the presented models of susceptibility and protection was compared.

Results obtained are far from conclusive but demonstrate lines for further studies still much needed in the field, and we agree with the conclusion that the existence of further major histocompatibility genes influencing RA susceptibility is probable.

S Laivoranta-Nyman, J Ilonen, R Hermann
Turku Immunology Centre and Department of Virology, University of Turku, Turku, Finland

T Möttönen, A Toivainen
Department of Medicine, Turku University Central Hospital, Turku, Finland

J Tuokko
Department of Medical Microbiology, University of Turku, Turku, Finland

R Luukkainen
Department of Rheumatology, Satakunta Hospital, Satakunta, Finland

M Hakola
Department of Internal Medicine, University of Oulu, Oulu Finland

P Hanno
Department of Medicine, Jyväskylä Central Hospital, Jyväskylä, Finland

M Korpela, U Yli-Kerttula
Department of Medicine, Tampere University Hospital, Tampere, Finland

Correspondence to: Dr Laivoranta-Nyman; susa@etu.fi

Reference


NSAIDs, including coxibs, probably do more harm than good, and paracetamol is ineffective for hip OA

New EULAR treatment guidelines in hip osteoarthritis (OA) were recently reviewed.1 The recommendations are allegedly based on top level scientific (grade 1a) data, and advocate the use of paracetamol (acetaminophen) and non-steroidal anti-inflammatory drugs (NSAIDs), including selective cyclo-oxygenase 2 inhibitors (coxibs), in OA of the hip. We interpret the underlying data differently. The review1 states that owing to a lack of studies evaluating paracetamol in hip OA alone, recommendations rely on studies that also include OA conditions in other joints. A review of four placebo controlled trials demonstrated an effect size (ES) of 0.21 (95% confidence interval (CI) 0.02 to 0.41).1 Two small (n = 50 and n = 60) trials could

www.annrheumdis.com
not be pooled for lack of data. Thus, ES calculations are from two trials, where the smallest reported no significant effect, leaving us with a final sample of 387 patients. The EULAR review does not mention that at a recent large (n = 779) knee OA trial reported a non-significant effect of paracetamol corresponding to a minus value of 8.0 mm on a visual analogue pain scale (VAS). Together, available data demonstrate a lack of effect of paracetamol in large joint OA.

Concomitant with the withdrawal of rofecoxib (Vioxx), and an increasing awareness that other coxibs may also induce serious cardiovascular toxicity, EULAR recommends the use of coxibs as second line treatment after paracetamol for patients at risk for gastrointestinal adverse effects. However, no references to randomised controlled trials (RCTs) or systematic reviews on coxibs are given. To our knowledge only two RCTs have evaluated the use of coxibs in hip OA alone. A trial funded by Pfizer with valdecoxib found a difference over placebo of only 1.6 from a baseline value of 10.8 on the WOMAC subscale of pain, which corresponds to a modest 7.9 mm on a VAS. Similar results were found for celecoxib in another Pfizer-funded trial. These results are well below the threshold of 15 mm on a VAS, which defines minimal clinically important differences. On the other hand, pivotal questions about the safety of coxibs remain unresolved. In our view, this calls for caution and suggests that the use of these drugs should be suspended until comprehensive safety data for all coxibs are available.

The EULAR review states that NSAIDs are effective, but that adverse effects may counter their benefit. This conclusion is based on one systematic Cochrane review, which allegedly included 14 placebo controlled trials. The ES for pain relief was 0.69 (95% CI 0.12 to 1.26). However, the cited Cochrane review does not include a single study published after 1994. It is not based on 14 placebo controlled trials, but on 14 placebo controlled comparisons. The number of placebo controlled trials included was three (with 9, 146, and 104 patients, respectively) of 2-8 weeks’ duration. The given ES of 0.69 was calculated from the results of a single 8 week trial (n = 146), which reported a mean difference over placebo corresponding to 10 mm on a VAS.

To our knowledge, no further hip-specific RCTs with NSAIDs have been published except the two coxib trials mentioned above, where groups of patients treated with naproxen were included. The efficacy of naproxen in these trials was not significantly different from that of the coxibs. A recent analysis of 23 trials on the efficacy of NSAIDs (including coxibs) in knee OA demonstrated a small effect of treatment on pain corresponding to 10.1 mm on a VAS, which is too modest to be of any clinical significance in the hip patient. No long term trials (>13 weeks) have demonstrated beneficial effects of NSAIDs over placebo in hip or knee OA. Although all NSAIDs may induce serious adverse effects, relevant safety issues cannot be evaluated in short term studies. In our view, it is highly likely that long term use of NSAIDs, including coxibs, does more harm than good in patients with OA of the hip.

We support the EULAR guidelines initiative as a positive contribution to evidence based care of patients with arthritis. However, we believe that some of the recommendations are erroneous and misleading.

In our view, the available information unequivocally demonstrates that standard pharmacological interventions with paracetamol and NSAIDs, including coxibs, cannot be recommended for the osteoarthritic patient.

J M Bjordal, A E Ljunggren, A Klovning, L Slordal
Department of Public Health and Primary Health Care, University of Bergen, 5016 Bergen, Norway

Correspondence to: Dr J M Bjordal, jmb@uib.no

References


Authors’ reply

We thank Dr Bjordal for his critical comments on paracetamol and NSAIDs (both conventional and coxibs), which were included in our recent evidence based recommendations for hip osteoarthritis (OA). We agree that direct research evidence for paracetamol in the management of hip OA is insufficient as described in the paper.

Unlike other guidelines, the EULAR evidence based recommendations are generated according to evidence from both clinical expertise and research evidence. We used a Delphi consensus approach to generate the key clinical propositions for the management of hip OA. We then went on to search systematically for research evidence for these propositions. Paracetamol was not included through the Delphi approach, but the research evidence to support its use in hip OA is lacking.

The results were reported to the committee and the strength of recommendation was then determined based on both clinical expertise and research evidence (in all forms of evidence in accord with evidence based principles). It is a group decision-making exercise with multidimensional trade-off procedure, taking into account efficacy, side effects, cost effectiveness and patient preferences. We first used a Delphi process because of the strategies of the EULAR Taskforce—evidence will only be included for assessment when a higher grade of evidence is not available. This may be arbitrary but reflects a consensus for the level of evidence, where systematic review is graded as Ia, and allows us to consider not only quality but also the contribution of any single study in the context of the entire literature pool.

As to what should be considered a clinically meaningful improvement, we used effect size as a general outcome in order to cross-compare the treatment programmes. It is suggested that 0.2 is the smallest worthwhile difference, and over 0.8 is a large clinical effect. Although the threshold of 15% pain reduction may be useful for single programmes, it is less useful for the guideline development, where cross-comparison of programmes are normally required.

M Doherty, W Zhang
University of Nottingham, UK

Correspondence to: Dr W Zhang, weiya.zhang@nottingham.ac.uk

References


7 Anonymous. Non-aspirin, non-steroidal anti-inflammatory drugs (NSAIDs) for osteoarthritis of the knee. The Cochrane Library, 2001; (15 pp, 16 ref, 12 bib.).
