Is IV infliximab better than IV methylprednisolone for the treatment of patients with RA when methotrexate fails?

A recent paper described a randomised comparative study of intravenous (IV) pulse methylprednisolone versus infliximab treatment in patients for whom methotrexate treatment had failed. The conclusions that infliximab treatment offered substantial benefits over IV methylprednisolone may be correct, but the design of the trial has requested a biased assessment in favor of IV infliximab treatment. In addition, the failure of the IV methylprednisolone treatment to alter significantly a number of clinical and laboratory measures, including sedimentation levels, is at odds with published reports.

A comparison between the patient group in that study and our previous papers on the use of IV methylprednisolone treatment suggests that the patients in each study had similar disease duration, seropositivity, and clinical and laboratory measures of disease activity. Two main differences between the two patient groups are the background corticosteroid use (none in our study and two patient groups in the study by Durez et al) and the use of methotrexate. It has been our anecdotal experience that patients receiving long term oral corticosteroids do not respond as well, or for as long, to IV methylprednisolone as do patients who are not receiving oral corticosteroids and may require more frequent administrations of IV methylprednisolone for the same effect. However, I am not aware of any published data to support this. Whether this might explain the lack of response to IV methylprednisolone in the study by Durez et al is unclear.

In addition, the comparison between a single dose of IV methylprednisolone and three infliximab infusions, while reflecting the authors’ clinical practice, is certainly a comparison biased in favour of the infliximab treated patient group. It should be remembered that there are no published data to validate the requirement for infliximab infusions at 0, 2, and 6 weeks. Some evidence suggests that a more sustained response to daily infusions of 1000 mg methylprednisolone succinat for 3 days rather than a single IV infusion is preferable, and our own studies showed a mean duration of response of only 5.1 weeks, suggesting that repeated infusions with IV methylprednisolone might have resulted in more benefit from this treatment. It might have been better for the authors to compare either consecutive daily infusions for 3 days or monthly infusions of IV methylprednisolone, especially as the main outcome measures were at week 14 after treatment.

M D Smith
Rheumatology Unit, Repatriation General Hospital, Adelaide, South Australia

Rapid response

If you have a burning desire to respond to a paper published in the Annals of the Rheumatic Diseases, why not make use of our “rapid response” option?

Log on to our website (www.annrheumdis.com) and find the paper that interests you, and send your response via email by clicking on the “eLetters” option in the box at the top right hand corner.

Providing it isn’t libellous or obscene, it will be posted within seven days. You can retrieve it by clicking on “read eLetters” on our homepage.

The editor will decide as before whether also to publish it in a future paper issue.

Correspondence to: Dr M D Smith; malcolm.smith@rgh.sa.gov.au

References


Authors’ reply

We thank Dr Smith for his comments on our study, which were largely addressed by Buttgereit et al. As already answered, the lack of significant response to intravenous methylprednisolone in our group of patients with rheumatoid arthritis (RA) is probably related to their disease severity, reflected by their previous treatments.

As an alternative hypothesis, suggested by Dr Smith, we will also speculate that our patients belong to a corticosteroid resistant RA subset. The mechanisms of resistance to corticosteroids are unknown in RA but have recently been explored in patients with asthma.

P Durez, T A Nzeusseu, B R Louverys, D H Manicourt, J-P Devogelaer, F A Houssiau
Rheumatology Department, Cliniques Universitaires Saint-Luc (Université catholique de Louvain), Belgium

P Verschueren, R Westhovens
UZ Gasthuisberg (Katholieke Universiteit Leuven), Belgium

Correspondence to: Dr F A Houssiau, Rheumatology Department, Cliniques Universitaires Saint-Luc, Université catholique de Louvain, Avenue Hippocrate 10, B-1800 Brussels, Belgium, houssiau@ruma.ucl.ac.be

Antimicrobial treatment for Chlamydia induced reactive arthritis

We read with interest the article entitled “Three month treatment of reactive arthritis with azithromycin: a EULAR double blind, placebo controlled study”. The trial of Kvien et al suggests that weekly administration of azithromycin for 3 months is not efficacious in ameliorating the symptoms of reactive arthritis (ReA). Although this point seems clear, the authors then make a leap of faith and suggest that “this study does not support the prolonged use of antibiotics for the alleviation of ReA”. There are several problems with this generalisation.

As Kvien et al correctly point out, polymerase chain reaction technology has documented the presence of Chlamydia and other causative organisms in the synovial tissue of patients with ReA. This same technology has convincingly shown both in vitro and in vivo evidence of persistent metabolically active Chlamydia. The data on post-dysenteric organisms have repeatedly demonstrated bacterial fragments, but viability has only been suggested in the case of Yersinia. This makes a strong argument for the use of antimicrobial agents in post-chlamydial ReA, yet both patients with post-venereal and post-dysenteric ReA were included in this trial.

Previous therapeutic trials also suggest that post-chlamydial ReA is more susceptible to antimicrobial treatment than the post-dysentery form. A 1991 trial suggested that lymecycline was an effective treatment for post-chlamydial ReA, but not for the post-dysentery form. A subgroup analysis of post-chlamydial patients in another trial assessing...
ciprofloxacin showed a trend towards improvement. There were not enough post-chlamydial patients in the trial of Kvien et al for a meaningful analysis to be made.

We also question the treatment itself in their trial. A one-time dose of 1000 mg of azithromycin is approved for an acute C. trachomatis infection; however, the proper dose for persistent infection has not been established. To our knowledge, 1000 mg weekly has never even been studied in vitro as a dose to treat persistent C. trachomatis. In addition, persistent C. trachomatis infections intermittently shed infectious elementary bodies, potentially evading weekly pulse antimicrobial treatment. It has also been demonstrated that the chronic treatment of C. trachomatis with azithromycin in vitro caused the C. trachomatis temporarily to arrest in a persistent viable state.4 Lastly, it has not been established if 3 months of a single antimicrobial agent is successful at treating an obligate intracellular organism that exists in a reticulate body. Other obligate intracellular organisms, such as Mycobacterium tuberculosis, require 9 months of combination antimicrobial treatment to ensure therapeutic response.

Kvien et al implied that their trial, along with previous trials, indicates a lack of efficacy of antibiotics in ReA. The antibiotics studied previously included tetracyclines, ciprofloxacin, and now azithromycin. C. trachomatis has demonstrated in vitro resistance to all of these antibiotics upon chronic administration.5 Further, ciprofloxacin has been shown to cause tendon based inflammation by potentiating interleukin 1β stimulated metalloproteinase-3 output in tendons.6 Is this then the proper antibiotic to choose in the treatment of an enthesopathy based inflammatory arthritis? We have recently completed a trial assessing a 9 month course of a combination of doxycycline and rifampin versus doxycycline monotherapy.7 The results showed a rather dramatic response in the patients who received the combination. The chlamydial resistance that has been documented in vitro, was overcome when a combination of antibiotics was used.8 Ours was the first trial to assess a combination of antibiotics in this setting.

Do antibiotics work in ReA, specifically C. trachomatis induced ReA? In our opinion, this question has not been answered. We believe studies of large groups of patients, with the appropriate antibiotics, in the right dose, used for the proper length of time, need to be conducted before this question can be answered.

J D Carter, J Valeriano, F B Vasey
University of South Florida, Division of Rheumatology, 12901 Bruce B Downs Blvd, MDC 81 Tampa, FL 33612, USA

Correspondence to: Dr J D Carter; jocarter@tsc.usf.edu

References

Authors’ reply
We thank Carter et al10 for their valuable comments on our paper which reported the results of 3 months’ treatment of reactive arthritis (ReA) with azithromycin. The data from our study definitely did not support prolonged use of antibiotics for the alleviation of ReA, because no trend was found in favour of long term treatment. However, we do not disagree that the data from the study by Carter et al, and from other authors, may support long term treatment with antibiotics in patients with ReA induced by C. trachomatis chlamatosis.

Such positive findings as have been reported seem to be restricted to this microbial agent. We note that the study by Carter et al was performed in patients with chronic undifferentiated spondyloarthropathy without confirmed infection, but 9 of 30 patients had either a possible or probable preceding symptomatic Chlamydia infection.

We also agree that various arguments can be employed in the discussion of the optimal antimicrobial agent in ReA. We chose azithromycin in our study because of its acceptable tolerability profile combined with a broad antimicrobial spectrum, as our study was designed to focus on all patients in whom ReA was a likely diagnosis—not just patients with Chlamydia induced ReA. Carter et al compared doxycycline 100 mg twice a day with doxycycline 100 mg twice a day + rifampicin 600 mg on day 1. The latter drug is most widely used for the treatment of tuberculosis. The safety of this combination should be clarified before recommendations are given for its wider use in ReA or undifferentiated spondyloarthropathy.

We would also welcome an adequately powered trial confined to patients with Chlamydia induced arthritis, to clarify the efficacy or otherwise of long term treatment with antibiotics in this condition. However, in our opinion, such a trial will be difficult to perform, because of the low number of recruiting large numbers of bacteriologically proven cases early in the course of their disease. For the present, therefore, clinicians must base their treatment on currently available data.


Authors’ reply

We thank Dr Roizin for his interest in our article and sharing his experience about a patient with Behçet’s syndrome (BS) who improved with co-trimoxazole. We also recently had a patient with BS who had severe pustulosis, arthritis, oral and genital ulcers and who similarly did well with antibiotics. Staphylococcus aureus grew from both the dermal pustules and the pustular pathergy lesions.

Thus far there have been few formal studies of antibiotic use in BS. Calguneri et al. reported that penicillin treatment was beneficial for the mucocutaneous lesions and arthritis. A similar beneficial effect was observed with minocycline, which reduced both the frequency of clinical symptoms and the production of inflammatory cytokines by peripheral blood mononuclear cells stimulated by streptococcal antigens. The issue of an infectious aetiology in BS has also long been discussed. Behçet himself proposed a viral aetiology. It has been suggested that viruses, such as herpes simplex virus and parvovirus B19, and bacteria including various streptococcal strains and staphylococci have a role.

In one study peripheral γδ-CD8+ T cells of patients with BS showed a significantly proliferative response to the Streptococcus sanguis strain KTH-1. In another, T cells from patients with BS produced interferon γ when stimulated with staphylococcal superantigens. Clinical evidence for the role played by an infectious agent in pathogenesis includes the presence of a higher incidence of chronic tonsillitis and dental caries in patients with BS, observation of exacerbations of BS symptoms after acute episodes of infection with Streptococcus agalactiae vaginitis, and gingival infections with methicillin resistant Staphylococcus aureus.

There are also reports from our group showing the association of papulopustular lesions with arthritis in BS, suggesting a reactive type of arthritis. Lehrer and colleagues suggested that a common antigen such as a stress protein might be involved. We have seen significant increase of IgA antibodies to mycobacterial 65 kDa heat shock protein (HSP) in the serum of patients with BS was shown. Owing to the significant homology between mammalian and microbial HSPs, it is suggested that recurrent exposure to HSP may cause bacterial HSP responsive T cells to stimulate autoreactive T cells by cross reactive mechanisms. In vivo experiments might produce Th1-like proinflammatory and/or inflammatory cytokines, leading to tissue injury.

Whatever the precise pathogenic mechanisms may turn out to be, it is unlikely that further controlled trials with antibiotics in BS are warranted.

G Hatemi, H Yazici
Division of Rheumatology, Department of Medicine, Cerrahpaşa Medical Faculty, University of Istanbul, Aksaray 34303, Istanbul, Turkey

Correspondence to: Dr H Yazici; hyazici@attglobal.net

References


4 Behcet H. Uber Rezidivierende, aphthöse durch ein Virus verursachte Geschwüre am Mund, am Auge


Different threshold for prolactin response to hypoglycaemia in patients with rheumatoid arthritis?

In this issue of the Annals Eijsbouts and coworkers1 show that the prolactin (PRL) response to hypoglycaemia is lower in patients with rheumatoid arthritis (RA) than in healthy controls. Furthermore, the unique design of their study allowed the authors to compare the PRL response before the test, after 2 weeks of treatment with a non-steroidal anti-inflammatory drug (NSAID) and, then again, after 6 months of conventional antirheumatic treatment with NSAIDs and disease modifying antirheumatic drugs (DMARDs). After 6 months of treatment they found that the PRL response to hypoglycaemia was significantly normalised, which correlated positively with the Disease Activity Score. The results of the study suggest that disease activity and/or treatment with DMARDs significantly affects the central regulation of PRL secretion resulting from stimulation in patients with RA.

A possible involvement of PRL in the pathophysiology of inflammatory diseases has been intensively studied, including a hypothesis about dysregulated secretion of this pituitary hormone in patients with RA.3 It has been shown that about one third of patients with RA are hyperprolactinaemic under basal conditions.4 However, controversy remains about whether stimulated secretion of PRL is up regulated or down regulated. Using the same stress stimulus as in the study of Eijsbouts et al.,2 we showed that the PRL response to hypoglycaemia was decreased in 38 patients with long term RA with moderate disease activity who were receiving treatment with NSAIDs or DMARDs. In line with others,2,5 we observed a PRL response to thyrotropin releasing hormone stimulation comparable to the response in healthy subjects in the same cohort of patients, suggesting a normal pituitary gland but altered central neuroendocrine regulatory mechanisms in patients with moderate disease activity. RA. The disease activity rather than the treatment itself seems to have a more important effect on the PRL response to hypoglycaemia.

The PRL response to insulin-induced hypoglycaemia, unlike that of other pituitary hormones (for example, growth hormone), is not usually triggered in all healthy subjects, at least in a dose of 0.1 IU/kg of rapid acting insulin and may depend on an individual person’s three genotypes.6

In our most recent study we observed a lower PRL response to hypoglycaemia in glucocorticoid naive premenopausal patients with RA. When we analysed the data we found that hypoglycaemia that a double or higher increase of plasma PRL occurred only in 5/15 (33%) patients with RA but in 8/14 (57%) controls. PRL responses were irrespective of any clinical (disease activity, disease duration) or biochemical (tumour necrosis factor α, interleukin 6, C reactive protein, erythrocyte sedimentation rate) variables. The prevalence of PRL responders was not significantly different in patients with RA and controls, probably owing to the small sample size; however, the area under the response curve of PRL in patients with RA was significantly lower than in healthy controls. Nevertheless, we suggest that patients with RA may have a tendency towards a higher threshold for PRL release in response to hypoglycaemia, which deserves further investigation.

To test our proposal we would be interested in having the authors’ view of their data in patients with RA and controls in which we treated nine patients with RA with quinagolide, a dopamine agonist, which suppresses PRL secretion.7 None of these patients had raised PRL levels under basal conditions.

In their current study,17/20 (85%) healthy subjects had a double or higher increase in PRL levels in response to hypoglycaemia-induced stress, unlike the findings of the authors in their study, who found that only 57% of controls had a double or higher increase of PRL. They found PRL responses in patients with RA irrespective of disease activity, whereas in our study, as mentioned in the article, we found a negative correlation of PRL and disease activity (DAS). We agree with the authors that it seems likely that disease activity is a more important factor in the changed PRL response than the treatment itself.

To answer the last question of the authors. In patients with RA we found that eight (40%) patients did not show a double or higher increase of PRL levels, and after treatment for 6 months only four did not show such a response, which could be consistent with the suggestion of Dr Imrich that more patients become PRL responding. However, 15/20 patients showed a marked increase in PRL levels after 6 months in response to hypoglycaemia-induced stress, and so we conclude that the improvement of the PRL response that we observed was

References


Authors’ reply

We thank the authors for their interest in our work and opportunity for discussion of this interesting but still puzzling subject. Published reports are contradictory, possibly because of different study subjects, different methods of stimulating prolactin (PRL) secretion, and large variation of PRL levels between individual subjects.

Indeed, the study mentioned by the authors5 showed that about one third of patients with rheumatoid arthritis (RA) were hyperprolactinaemic under basal conditions, and in our article we refer to other studies reporting hypoprolactinaemia in RA. However, by now we have performed three studies in which we could not confirm this: (a) the study that is now being discussed, including a total of 50 patients with RA; (b) a former smaller study in patients before and after undergoing total hip replacement, in which 10 patients with RA were compared with patients with osteoarthritis; and (c) a study in which we treated nine patients with RA with quinagolide, a dopamine agonist, which suppresses PRL secretion.7 None of these patients had raised PRL levels under basal conditions.

In our current study,17/20 (85%) healthy subjects had a double or higher increase in PRL levels in response to hypoglycaemia-induced stress, unlike the findings of the authors in their study, who found that only 57% of controls had a double or higher increase of PRL. They found PRL responses in patients with RA irrespective of disease activity, whereas in our study, as mentioned in the article, we found a negative correlation of PRL and disease activity (DAS). We agree with the authors that it seems likely that disease activity is a more important factor in the changed PRL response than the treatment itself.

To answer the last question of the authors. In patients with RA we found that eight (40%) patients did not show a double or higher increase of PRL levels, and after treatment for 6 months only four did not show such a response, which could be consistent with the suggestion of Dr Imrich that more patients become PRL responding. However, 15/20 patients showed a marked increase in PRL levels after 6 months in response to hypoglycaemia-induced stress, and so we conclude that the improvement of the PRL response that we observed was
due to a general quantitatively higher response in most patients, and not a shift towards more patients being PRL responding.

A M M Eijsbouts on behalf of the other authors
Department of Rheumatology, University Medical Centre, Nijmegen, PO Box 9101, 6500 HB, Nijmegen, The Netherlands

Correspondence to: Dr A M M Eijsbouts; a.eijsbouts@maartenskliniek.nl

References

A costly therapeutic dilemma in tophaceous gout: is etanercept or rasburicase preferable?

Tausche et al. described a case of severe tophaceous gouty arthritis, which was treated with etanercept. They showed that antitumour necrosis factor α (TNFα) treatment can reduce the incidence of gouty attacks, which corresponds with the observation that TNFα is activated in patients with gouty arthritis. Clearly, this is a costly symptomatic approach that is only in addition to the main treatment, which is lowering the serum uric acid (SUA) levels in order to deplete urate depots and prevent gouty attacks and joint damage in the long term.

In the case presented, uricosuric treatment could only lower SUA levels from 0.58 mmol/l to 0.36 mmol/l despite high doses of 2–3 g probenecid a day. This is in contrast with our experience. In our population of 95% undersecretors (defined as uric acid excretion in urine <6.0 mmol/day during normal diet) monotherapy with probenecid 500 mg twice daily lowers SUA levels by 35% (mean (SD) 0.17 (0.05) mmol/l), whereas probenecid 500 mg twice daily in combination with allopurinol 200 mg daily lowers SUA levels by 48% (0.27 (0.08) mmol/l) in patients with an adequate renal function (endogenous creatinine clearance >50 ml/min).

In the case presented by Tausche et al., uricosuric treatment was not effective or contraindicated. These cases are extremely rare and occur in under 0.01% of the population of undersecretors.

Therefore, measurement of SUA levels alone does not verify the efficiency of treatment. In view of our own experience (unpublished data), we agree with Reinders et al. that the recombinant urate oxidase rasburicase should be introduced into the treatment of severe tophaceous gout if conventional uric acid lowering treatment is not effective or contraindicated. These cases are extremely rare and occur in under 0.01% of the population of undersecretors.

There are two principles in the treatment of gout: firstly, uric acid lowering treatment with uricosuric and uricolytic agents and, secondly, anti-inflammatory treatment of gouty attacks. Both of these treatment regimens should follow a “step scheme.”

In the uric acid lowering treatment rasburicase might rank as the last step in treatment of patients with tophaceous gout. When gouty arthritis is refractory to treatment (with non-steroidal anti-inflammatory drugs, steroids, opioids) it is useful to introduce tumour necrosis factor α (TNFα) blockade, as we showed in the published case. Because two different principles of action cannot be followed there seems to be no need to answer the question of priority of one of these treatments. Rasburicase should not be considered before TNFα blockade but, rather, the two should be combined if conventional treatment is not sufficient.

The main dilemma of both treatments in the first instance is not the high cost but the missing approval by the FDA in severe tophaceous gout. Unfortunately, valid data are lacking, for instance, about the best way of application (dosage, application interval) owing to the absence of clinical studies. Shortly after infusion of rasburicase instantaneous uric acid metabolisation with abrupt decrease of SUA is observed. The resultant shift of uric acid from tissues to blood may cause a higher intensity of gouty attacks, and as we observed in one patient with urate nephropathy the worsening of renal function. We are very interested to learn of the article proposed by Moollenburgh et al.

References

Authors’ reply

Like Reinders et al, we have found that in the defined “normal” population of undersecretors, conventional treatment effectivley lowers serum uric acid (SUA) levels to the norm. In those critical cases of severe tophaceous gout, as presented by us, the multiple tophi in an adequately renal function (endogenous creatinine clearance >50 ml/min) do not allow the normally accepted uricosuric treatment. We showed that the recombinant urate oxidase rasburicase should be introduced into the treatment of severe tophaceous gout if conventional uric acid lowering treatment is not effective or contraindicated. These cases are extremely rare and occur in under 0.01% of the population of undersecretors.

http://www.annrheumdis.com: supplendal

CORRECTION

doi: 10.1136/ard.2003.017087corr1


We regret that table 5 of this paper mentioned on p 101 was omitted. This can now be found on the web at http://www.annrheumdis.com: supplendal

Corrections printed in the journal also appear on the Annals website http://www.annrheumdis.com and are linked to the original publication

FORTHCOMING EVENTS

Future events can be found on the website at http://annrheumdis.com