Toll-like receptors in rheumatoid arthritis joint destruction mediated by two distinct pathways

C Ospelt, D Kyburz, M Prier, R Seibl, M Kurowska, O Distler, M Neidhart, U Muller-Ladner, T Pap, R E Gay, S Gay

Novel therapies, in particular biological agents, have resulted in major breakthroughs in the treatment of rheumatoid arthritis (RA). However, none of the new and promising biologicals has resulted in an American College of Rheumatology (ACR) 70 above 50%, and none of them has shown sustained benefit after termination of therapy. These results are based on the fact that all these agents target the inflammatory cells in the joint, including macrophages, T and B lymphocytes, or vascular endothelium but not the activated synovial fibroblasts. RA synovial fibroblasts (RA-SFs) have to be considered key cells in joint destruction since they differ in their morphology and their biological behaviour from normal synoviocytes and, most importantly, show invasive growth into adjacent tissue.

We have shown that RA-SFs maintain their activated phenotype independently of inflammatory cells and cytokines, considering that they invade human cartilage in the severe combined immunodeficiency (SCID) mouse model even in the absence of cytokine producing macrophages and T and B cells. By analysing cytokines, matrix degrading enzymes, and signalling molecules in the SCID mouse model, we explored the factors leading to synovial activation.

Characterisation of RA-SFs in detail has shown that cellular activation is driven and maintained by proinflammatory cytokines as well as by cytokine independent pathways of activation such as endogenous retroviral elements. In these studies, it was shown for the first time that a specific isoform of the p38 family, namely p38δ, is induced through the expression of L1 retrotransposable elements in RA-SFs in a cytokine independent pathway (fig 1). In RA synovial tissue, p38δ is predominantly expressed at sites of invasion and bone destruction, whereas other members of the p38 family, such as p38α, are found in the non-attached lining and sublining layers.

These data and the results from the SCID mouse model clearly indicate that at least two pathways of joint destruction are operational in RA. The cytokine dependent pathway is mainly driven by inflammatory cells and targeted by the biologicals, whereas RA-SFs play a key role in the cytokine independent pathway.

Most recently, our work has focused on the search for additional stimulating factors in the activation of RA-SFs in RA. On the basis of the fact that bacterial DNA containing CpG motifs and bacterial cell wall fragments (peptidoglycans) have been detected in the synovial fluid of patients with RA, we have been searching for the presence of the germ line encoded pattern recognition receptors, called toll-like receptors (TLRs), to initiate activating signals in these cells. The TLR family comprises at least 11 members, however, TLR-11 was identified only very recently. Even though the diverse ligands and signalling pathways of most TLRs are well characterised, it is still not clear how and where exactly they interact with their ligands and whether they possibly contribute to the development of autoimmune diseases.
mediated bone destruction in RA. Of osteoclasts, this pathway potentially facilitates osteoclast ligand (RANKL). Since RANKL promotes the differentiation mediates the upregulation of the receptor activator of NF-
a hypoxia inducible factor (HIF-1) independent way and in RA-SFs by hypoxia and proinflammatory cytokines in Helix-Loop-Helix (bHLH) transcription factor. Id-2 is induced molecules, including Id-2, a negative regulator of the basic-
detected at sites of destruction in joints in RA. Furthermore, they showed that hypoxia induces a number of interesting molecules, including Id-2, a negative regulator of the basic-Helix-Loop-Helix (bHLH) transcription factor. Id-2 is induced in RA-SFs by hypoxia and proinflammatory cytokines in a hypoxia inducible factor (HIF-1) independent way and mediates the upregulation of the receptor activator of NF-κB ligand (RANKL). Since RANKL promotes the differentiation of osteoclasts, this pathway potentially facilitates osteoclast mediated bone destruction in RA.

Authors' affiliations

C Ospelt, D Kyburz, M Pierer, R Seibl, M Kurowska, O Distler, M Neidhart, U Muller-Ladner, T Pap, R E Gay, S Gay, WHO Collaborating Center for Molecular Biology and Novel Therapeutic Strategies for Rheumatic Diseases, Clinic for Rheumatology, University Hospital, Zurich, Switzerland.

Correspondence to: S Gay, WHO Collaborating Center for Molecular Biology and Novel Therapeutic Strategies for Rheumatic Diseases, Clinic for Rheumatology, University Hospital, Gloriastrasse 25, CH 8091 Zurich, Switzerland; Steffen.Gay@usz.ch

REFERENCES