Serum amyloid P component levels are not decreased in patients with systemic lupus erythematosus and do not rise during an acute phase reaction

M Bijl, H Bootsma, Y van der Geld, P C Limburg, C G M Kallenberg, M H van Rijswijk

Background: Serum amyloid P component (SAP) and acute phase proteins like C-reactive protein contribute to the clearance of apoptotic cells. This response is diminished in systemic lupus erythematosus (SLE).

Objectives: To analyse SAP concentrations in SLE in relation to disease activity, and investigate whether SAP reacts like an acute phase protein.

Methods: SAP was measured in 40 patients with SLE during active and inactive disease and compared with healthy controls and patients with rheumatoid arthritis and Wegener’s granulomatosis. Normal SAP values were determined in 120 healthy controls by EUSA. C reactive protein and serum amyloid A (SAA) were measured in all subjects and their levels related to SAP. SAP was also measured serially in 11 patients with breast cancer treated with recombinant human interleukin-6, and in 16 patients with sepsis.

Results: In SLE, SAP was unaltered compared with healthy controls and was not influenced by disease activity, in contrast to C reactive protein and SAA, which increased during active disease. SAP increased in Wegener’s granulomatosis but not in rheumatoid arthritis. The rise in C reactive protein and SAA was most pronounced in Wegener’s granulomatosis with active disease. SAP did not change significantly during an acute phase response. No correlation was found between SAP and C reactive protein or SAA, but there was a correlation between SAA and C reactive protein (r=0.4989, p=0.0492).

Conclusions: Patients with SLE have normal circulating SAP levels. In contrast to C reactive protein or SAA, SAP does not act as an acute phase protein.

Serum amyloid P component (SAP) is a member of the pentraxin family of proteins. This family consists of several proteins such as C reactive protein and pentraxin-3 (PTX3), which are characterised by a cyclic pentameric structure and calcium dependent ligand binding. SAP is the serum precursor of the P component of amyloid. It binds to a broad group of molecules, including autoantigens, through a pattern recognition binding site. The function of SAP is still unknown. It probably serves as an opsonising protein in the clearance of apoptotic cells, because, like the other pentraxins, it can bind to these cells. Chromatin and phosphatidylethanolamine, which are exposed at the outer surface of cells during the process of apoptosis, are supposed to be the major binding sites.

Disturbances in the clearance of apoptotic material are associated with the development of autoimmunity. Apoptotic cells have several intracellular (auto)antigens at their outer surface. Normally, such cells are rapidly removed so that exposure of these antigens to the immune system hardly occurs. However, whenever the clearance of apoptotic cells is disturbed, their accumulation will facilitate the development of autoimmunity. Indeed, in mice a deficiency of complement factor C1q, a protein necessary for the opsonisation and phagocytosis of apoptotic cells, results in the production of autoantibodies and subsequently in the development of a glomerulonephritis resembling human SLE. In favour of the above hypothesis is the presence of apoptotic debris in the glomeruli of affected animals. Interestingly, mice with a targeted deletion of SAP spontaneously produce antinuclear antibodies and develop glomerulonephritis, suggesting that the absence of, or probably even a decrease in, SAP may predispose to autoimmunity.

Following these findings in mice, we speculated that SAP may be deficient in patients with SLE, either qualitatively or quantitatively, compared with healthy controls, and might influence the development and course of the disease. As the structure and function of SAP in SLE patients has been shown to be unaltered, quantitative evaluation of SAP could be important. We propose that the decrease in SAP will be even more pronounced during active disease, thus explaining, in part, the occurrence of apoptotic cells described in these patients.

In this study, we measured SAP in patients with SLE during active and inactive disease, and compared these data with levels in healthy and disease controls to investigate the possible role of SAP in the pathogenesis of SLE. We measured SAP, C reactive protein, and serum amyloid A (SAA) levels simultaneously in all the patients and serially in other subjects with an (exogenously induced) acute phase response, to evaluate whether SAP, like C reactive protein, reacts to some extent as an acute phase protein.

METHODS

Patients

Sap serum amyloid P was analysed in 40 patients with SLE (36 female, four male), mean (SD) age 34.2 (12.3) years. All fulfilled at least four of the American College of Rheumatology (ACR) criteria for SLE. SAP values in these patients were compared with those in 120 healthy volunteers, 81 female (47.1 (16.9) years) and 39 male (53.9 (17.4) years). To analyse the influence of disease activity on SAP in patients with SLE, we analysed paired sera collected during active and inactive periods.

Abbreviations: ACR, American College of Rheumatology; SAA, serum amyloid A; SAP, serum amyloid P; SLE, systemic lupus erythematosus
analyses. Serum SAP, SAA, and C reactive protein concentrations were determined by enzyme linked immunosorbent assay (ELISA). For the detection of SAP, microtitre plates (Costar, Badhoevedorp, Netherlands) were coated in 0.1 M sodium carbonate, pH 9.6, with a monoclonal antibody directed against SAP (Novocastra Laboratories, Newcastle on Tyne, UK; 1:1000). After washing, serum specimens were added starting at a 250-fold dilution, with a further fourfold dilution in 0.05 M Tris, 0.3 M NaCl, 1% BSA, and 0.05% Tween-20 for one hour. As a positive control a SAP standard curve was used for group comparisons where appropriate. Paired "t" tests were used for differences between inactive and active samples when a normal distribution could be assumed. Otherwise the Wilcoxon signed rank test was used. Differences between multiple groups were calculated by one way analysis of variance (ANOVA) with Bonferroni’s multiple comparison test. Correlations were calculated using the Spearman rank correlation coefficient. Reported probability (p) values were two tailed and p<0.05 was considered significant.

RESULTS

SAP values in SLE

Mean (SD) serum SAP in SLE patients with inactive disease was 26.4 (11.4) mg/l, which was not statistically different from the values in 120 healthy controls (27.7 (10.6) mg/l). Because the mean SAP tended to be higher in male than in female controls (30.0 (12.7) v 26.6 (9.3) mg/l (p = 0.0955)), data from male and female patients were compared separately with their respective controls. The results are shown in fig 1. No significant differences were found. In the control population serum SAP was not related to age (data not shown).

In addition, we analysed SAP values in SLE patients during active disease, assuming that at such times a relative deficiency in SAP might occur. However, disease activity did not influence serum SAP (table 1). Even when we made a subanalysis of SAP values in patients who did develop an
Serum amyloid P component (SAP) (A), C reactive protein (B), and serum amyloid A (SAA) (C) values in 40 patients with SLE during active disease. Disease manifestations were divided into organ manifestations based on the ACR criteria of SLE: RE, renal; CE, cerebral; SK, skin; HA, haematological; MU, musculoskeletal; SE, serositis. More than one organ system could be involved in an individual patient. Horizontal bars indicate the mean.

Figure 2 Serum amyloid P component (SAP) (A), C reactive protein (B), and serum amyloid A (SAA) (C) values in 40 patients with SLE during active disease. Disease manifestations were divided into organ manifestations based on the ACR criteria of SLE: RE, renal; CE, cerebral; SK, skin; HA, haematological; MU, musculoskeletal; SE, serositis. More than one organ system could be involved in an individual patient. Horizontal bars indicate the mean.
apoptotic cells cannot be excluded. SAP has been found to bind to late apoptotic cells. Moreover, we have recently shown that the binding of SAP to these cells has functional consequences for their elimination, SAP depletion resulting in a 50% decrease in the uptake of late apoptotic cells by monocyte derived macrophages. From the concept that pentaxins have a function in the opsonisation and clearance of apoptotic cells, a particular role for these proteins can be proposed during inflammation, when large numbers of cells are dying and have to be cleared rapidly to prevent their accumulation. Indeed, both C reactive protein and PTX3 levels rise rapidly during inflammation. C reactive protein is produced by the liver after IL-6 induction. PTX3 is produced locally on the site of inflammation by macrophages and endothelial cells. However, levels of both C reactive protein and PTX3 are low in active SLE. Complement proteins, which opsonise apoptotic cells, are also low during active disease. Therefore, hampered opsonisation of apoptotic cells in SLE in the face of increased production will contribute to their persistence. It is conceivable that SAP acts as a rescue protein in the clearance of late apoptotic cells. For a role as rescue protein the amount of SAP that is constitutively present will be a sufficient backup if opsonisation and clearance of apoptotic cells fails and late apoptotic cells persist.

We cannot rule out the possibility that SAP levels in SLE are higher than we have measured. In the first place, SAP–DNA complexes have been described in the sera of SLE patients. These complexes might have interfered with our assay. Second, it has been shown recently that the majority of SLE patients have antibodies to SAP, which in theory might also reduce the free SAP levels measured. Evaluation of this potential source of interference is currently under way.

Finally, we evaluated whether SAP reacts as an acute phase protein. Although others have reported that SAP levels remain relatively stable in different diseases, including malignancy and infections, no studies on the kinetics of SAP have been carried out before. To evaluate this, we used two different models. We could show that, compared with C reactive protein or SAA, SAP does not have the kinetics of an acute phase protein. SAP tended to decrease in the earliest stage of the acute phase reaction and showed some increase in a case of sustained inflammation. It is conceivable that during chronic inflammation SAP levels are slightly raised, and we propose that this explains the increase found in patients with Wegener’s granulomatosis.

<table>
<thead>
<tr>
<th></th>
<th>SLE (n = 40)</th>
<th>Rheumatoid arthritis (n = 31)</th>
<th>Wegener’s granulomatosis (n = 25)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Active</td>
<td>Inactive</td>
<td>Active</td>
</tr>
<tr>
<td>SAP</td>
<td>27.8 (11.3)</td>
<td>26.4 (11.4)</td>
<td>32.3 (12.3)</td>
</tr>
<tr>
<td>C reactive protein</td>
<td>32.6 (64.5)**</td>
<td>9.3 (15.9)</td>
<td>22.7 (23.3)**</td>
</tr>
<tr>
<td>SAA</td>
<td>23.4 (40.1)**</td>
<td>9.7 (24.3)</td>
<td>40.9 (49.5)</td>
</tr>
</tbody>
</table>

Paired analysis of SAP, C reactive protein, and SAA detected in patients with SLE, rheumatoid arthritis, and Wegener’s granulomatosis during active and inactive disease. Values are mean (SD), mg/dl.

p<0.01, *p<0.001, paired r test.
SAA, serum amyloid A; SAP, serum amyloid P; SLE, systemic lupus erythematosus.

Figure 3 Serum amyloid P component (SAP) in healthy controls (n = 120), SLE (n = 40), rheumatoid arthritis (n = 31), and Wegener’s granulomatosis (n = 25). SAP in the patients was measured during inactive disease. Horizontal bars indicate the mean. ***p<0.001 by one way analysis of variance with Bonferroni’s multiple comparison test.

Figure 4 Serum amyloid P component (SAP) does not behave as an acute phase protein. (A) SAP, C reactive protein, and serum amyloid A (SAA) responses in a patient with breast cancer treated for seven days with recombinant interleukin 6 (rhIL-6) at a dose of 20 mg/kg/day. Even though a significant increase in C reactive protein (from 18 to 395 mg/l on day 3) and an even more pronounced increase in SAA (from 11 to 770 mg/l on day 3) occurred, SAP levels hardly changed. (B) SAP levels of the same patient in more detail, showing a decline in SAP up to day 3, at the maximum of the acute phase response, and a slight increase thereafter.
Conclusions
We have shown that SAP concentrations are not decreased in patients with SLE and are not related to disease activity. Compared with C reactive protein and SAA, SAP does not react as an acute phase reactant. Serum SAP even decreased slightly in the initial stage of an acute phase reaction. However, these findings do not exclude a role for SAP in the pathogenesis of SLE, as a relative deficiency of this protein during acute inflammation may contribute to the persistence of (late) apoptotic cells. This should be addressed in further studies.

ACKNOWLEDGEMENTS
We are indebted to J Bijzet and Dr B P C Hazenberg for their technical assistance. The study was supported by the Dutch Arthritis Association (Het Natioaal Reumafonds), grant NR 99-2-101.

Authors’ affiliations
M Bijl, C G M Kallenberg, Department of Clinical Immunology, University Hospital, Groningen, Netherlands
H Bootsma, M H van Rijswijk, Department of Rheumatology, University Hospital, Groningen
Y van der Geld, P C Limburg, Department of Pathology and Laboratory Medicine, University Hospital, Groningen

REFERENCES