Increased transendothelial migration of scleroderma lymphocytes

G H Stummvoll, M Aringer, J Grisar, C W Steiner, J S Smolen, R Knobler, W B Graninger

Background: CD4+ T lymphocytes play an important part in the pathogenesis of scleroderma (systemic sclerosis, SSc) and predominate in perivascular SSc skin lesions. Both soluble and membrane bound adhesion molecules are overexpressed in SSc, possibly influencing lymphocyte/endothelial cell (EC) contact.

Objective: To assess the transendothelial migration capacity of peripheral lymphocytes in vitro.

Patients and methods: Collagen was covered with human umbilical vein endothelial cells (HUVEC), and peripheral blood mononuclear cells (PBMC) of patients and matched healthy controls (HC) were added in parallel experiments. Before and after fractionated harvest of non-adherent, bound, and migrated lymphocytes, the CD4/CD8 ratio and the lymphocytic expression of activation markers and adhesion molecules were analysed by flow cytometry.

Results: 13 (SD 12)% of the SSc PBMC migrated compared with only 5 (5)% HC PBMC (p<0.0002); this increase was primarily due to the migration of CD3+ T lymphocytes and mainly to a larger proportion of CD4+ cells within this CD3+ fraction (71 (SD 14)% for SSc vs 56 (14)% for HC, p<0.03), leading to an increased CD4/CD8 ratio among migrated SSc lymphocytes in comparison with controls (3.3 (1.5) v 1.62 (0.93), p<0.006). Among migrated SSc CD4+ T lymphocytes, the frequency of HLA-DR+ cells was increased; migrated lymphocytes highly expressed the adhesion molecules CD11a, CD49d, CD29, and CD44.

Conclusion: Transendothelial migration of CD4+ T lymphocytes is enhanced in SSc, and migrating cells exhibit an activated phenotype. The data suggest that activated CD3+CD4+ lymphocytes as found in SSc peripheral blood are prone to transvascular migration, thus contributing to the formation of typical perivascular lymphocytic infiltrates.
Data on clinical manifestations (skin, pulmonary, cardiac, renal, oesophageal, gastrointestinal), serological findings (autoantibodies, C reactive protein), and treatment were recorded (table 1). Eleven healthy subjects (10 female, 1 male, mean age 55.6 (SD 15.25) years) served as a control group. In each experiment, patients and controls were tested in parallel. All patients and controls gave informed consent to venepuncture and analysis of 20 ml of heparinised venous blood.

Preparation and culture of PBMC and EC

PBMC were freshly isolated over a Ficoll-Hypaque gradient, washed, and counted on a haemocytometer.

Because HUVEC resemble human arterial and human venous EC in their expression of adhesion molecules and because, in striking contrast, human EC lines do not, HUVEC were regarded a good model for observing EC/lymphocyte interactions.\(^{22-24}\) We used EC harvested from human umbilical cord veins by collagenase digestion, as described.\(^{25}\) The culture medium of EC consisted of MCDB-M 104 (Gibco, Paisley, UK) supplemented with 20% fetal calf serum, 24 g/ml endothelial cell growth supplement (TC Laevosan, Linz, Austria), 50 U/ml heparin, 2 mM L-glutamine (Gibco), 100 U/ml penicillin (Gibco), and 100 mg/ml streptomycin (Gibco). EC were removed from the culture flasks with trypsin-EDTA (Gibco). Because HUVEC retain phenotypical homogeneity and stability upon cultivation and in order to allow comparisons with previous studies\(^{25-27}\) EC of the third to fourth passage were used for the assay of transendothelial migration (TEM).

Assay of TEM

Monolayers of EC on collagen gels

To study TEM, an in vitro assay was used as previously described\(^{25}\) (fig 1). Collagen gels were formed in 16 mm macrowell tissue culture plates of 50% bovine collagen (Collagen Biomaterials, Palo Alto, CA, USA), 7% 0.1 M NaOH, 10% highly concentrated phosphate buffered saline (PBS; 10× PBS by Gibco), and 33% distilled water. EC (5×10⁵ per well) were incubated overnight to form a confluent monolayer on the collagen gels. Confluence was carefully controlled by two different investigators for each single well recovered 11.71 (7.24) in NAD, 1.53 (2.10) in BND, and 2.46 (3.39) in MIG, respectively; in HC, we recovered 11.71 (7.24) in NAD, 1.53 (2.10) in BND, and 0.88 (1.12) in MIG, respectively. The intra-assay variability was 8 (11%). Additional analyses by fluorocytometry were performed as described below.

Preparation and labelling of peripheral blood cells

Freshly prepared PBMC and the three fractions obtained after the incubation (NAD, BND, MIG) were stained in parallel according to standard procedures using antibodies against CD3, CD4, CD8, CD11a, CD25, CD69, HLA-DR (Becton Dickinson, San Jose, CA, USA), CD29, CD49d (Immunotech, Marseille, France), CD44 (Pharmingen, San Diego, CA, USA), CD45RO, CD54 (Serotec, Raleigh, NC, USA) directly conjugated to fluorescein isothiocyanate (FITC), phycoerythrin (PE), or peridinin chlorophyll protein...
Transendothelial migration of scleroderma lymphocytes was therefore excluded from all analyses. Lymphocytes and developed influenza the next day. This single sample indicates that the respective negative control had highly activated diffuse SSc, open triangles indicate limited disease, and the small circle depicts PBMC of SSc and HC in parallel experiments. Filled triangles indicate increased transendothelial migration of SSc PBMC. Testing positive in surface immunofluorescence. Numeric data are expressed as mean (SD). Student’s t test was used to compare non-parametric variables in 2×2 and 2×4 tables, respectively. Pearson correlation coefficients were calculated for investigating possible associations between variables. The predefined primary variables were the percentage of migrated PBMC and the CD4/CD8 ratio, for which p values <0.025 (two comparisons) were considered significant. For all other variables, the p values were regarded as descriptive and are thus not corrected for.

RESULTS

Increased migration of PBMC and T lymphocytes in SSc compared with controls

Testing PBMC of SSc and HC in parallel experiments, we found that 13 (12%) of the SSc PBMC migrated compared with only 5 (5%) HC PBMC, with the percentage MIG of patients with SSc always higher than that of the healthy subjects tested on the same day (p<0.0002, χ² test; fig 2). Moreover, the proportion of SSc T lymphocytes among the migrated cells was higher than that of HC T lymphocytes (67 (14%) v 58 (13%)). There was a significant correlation between CD4+ cell migration and total PBMC migration (r² = 0.55, p = 0.006). Therefore, the increased migration of SSc PBMC is, at least in part, due to an increased propensity of CD3+ T lymphocytes towards transendothelial migration.

Increased migration of CD3+CD4+ lymphocytes in SSc

Fluorocytometry further showed that the increased migration of T lymphocytes of patients with SSc was mainly due to an increase in CD4+ cells within the migrated CD3+ fraction (71 (14%) in SSc v 56 (14%) in HC, p<0.03). Interestingly, the proportions of CD3+CD4+ cells of HC, but not of SSc, were lower in the MIG (56 (14%)%) fraction than in PBMC before migration (68 (11%), p<0.05; table 2).

Vice versa, and in accordance with the literature on cell migration, the frequency of CD3+CD8+ lymphocytes was increased in the MIG fraction of HC cells, but not in the MIG fraction of SSc lymphocytes (43 (14%) v 29 (15%), respectively, p<0.04; table 2), indicating that SSc CD8+ lymphocytes undergo TEM, but to a lesser degree than SSc CD4+ or HC CD8+ T cells.

Rise in the CD4/CD8 ratio in migrated SSc lymphocytes

In SSc, reports on changes in the distribution of T cell subsets suggested a decreased number of CD3+ T cells and an increased CD4/CD8 ratio in peripheral blood which is, at least in part, due to a greater resistance of CD4+ lymphocytes to apoptotic stimuli. Interestingly, the CD4/CD8 ratio in 8/12 patients with SSc (to 3.27 (1.54)) but decreased in 10/11 HC (to 1.62 (0.93), p<0.002 calculated by Fisher’s exact test; p<0.006 in unpaired t test; table 2, fig 3).

Statistics

Detection of autoantibodies

In our patients with SSc, antinuclear antibodies and anti-Scl-70 antibodies were detected by indirect immunofluorescence and Ouchterlony double immunodiffusion, respectively, according to standard procedures. All patient sera were additionally analysed for anticentromere antibodies by line immunoblotting and Ouchterlony double immunodiffusion, respectively. In our patients with SSc, antinuclear antibodies and anti-Scl-70 antibodies were detected by indirect immunofluorescence.

Fluorocytometry

Immediately after staining, cells were analysed on a Becton-Dickinson FACScan fluorocytometer. Gates were carefully set for lymphocytes, excluding the monocyte population. Cells brighter than the respective isotype control were defined as positive in surface immunofluorescence.

Detection of autoantibodies

In our patients with SSc, antinuclear antibodies and anti-Scl-70 antibodies were detected by indirect immunofluorescence and Ouchterlony double immunodiffusion, respectively, according to standard procedures. All patient sera were additionally analysed for anticentromere antibodies by line immunoblotting, which has been considered a reliable alternative to conventional techniques with an, at least, similar sensitivity and specificity.

Statistics

Numeric data are expressed as mean (SD). Student’s t tests and paired t tests were employed for the comparison of groups and paired samples, respectively. Fisher’s exact test and χ² test were used to compare non-parametric variables in 2×2 and 2×4 tables, respectively. Pearson correlation coefficients were calculated for investigating possible associations between variables. The predefined primary variables were the percentage of migrated PBMC and the CD4/CD8 ratio, for which p values <0.025 (two comparisons) were considered significant. For all other variables, the p values were regarded as descriptive and are thus not corrected for.

Fluorocytometry

Immediately after staining, cells were analysed on a Becton-Dickinson FACScan fluorocytometer. Gates were carefully set for lymphocytes, excluding the monocyte population. Cells brighter than the respective isotype control were defined as positive in surface immunofluorescence.

Detection of autoantibodies

In our patients with SSc, antinuclear antibodies and anti-Scl-70 antibodies were detected by indirect immunofluorescence and Ouchterlony double immunodiffusion, respectively, according to standard procedures. All patient sera were additionally analysed for anticentromere antibodies by line immunoblotting, which has been considered a reliable alternative to conventional techniques with an, at least, similar sensitivity and specificity.

Statistics

Numeric data are expressed as mean (SD). Student’s t tests and paired t tests were employed for the comparison of groups and paired samples, respectively. Fisher’s exact test and χ² test were used to compare non-parametric variables in 2×2 and 2×4 tables, respectively. Pearson correlation coefficients were calculated for investigating possible associations between variables. The predefined primary variables were the percentage of migrated PBMC and the CD4/CD8 ratio, for which p values <0.025 (two comparisons) were considered significant. For all other variables, the p values were regarded as descriptive and are thus not corrected for.

RESULTS

Increased migration of PBMC and T lymphocytes in SSc compared with controls

Testing PBMC of SSc and HC in parallel experiments, we found that 13 (12%) of the SSc PBMC migrated compared with only 5 (5%) HC PBMC, with the percentage MIG of patients with SSc always higher than that of the healthy subjects tested on the same day (p<0.0002, χ² test; fig 2). Moreover, the proportion of SSc T lymphocytes among the migrated cells was higher than that of HC T lymphocytes (67 (14%) v 58 (13%)). There was a significant correlation between CD4+ cell migration and total PBMC migration (r² = 0.55, p = 0.006). Therefore, the increased migration of SSc PBMC is, at least in part, due to an increased propensity of CD3+ T lymphocytes towards transendothelial migration.

Increased migration of CD3+CD4+ lymphocytes in SSc

Fluorocytometry further showed that the increased migration of T lymphocytes of patients with SSc was mainly due to an increase in CD4+ cells within the migrated CD3+ fraction (71 (14%) in SSc v 56 (14%) in HC, p<0.03). Interestingly, the proportions of CD3+CD4+ cells of HC, but not of SSc, were lower in the MIG (56 (14%)%) fraction than in PBMC before migration (68 (11%), p<0.05; table 2).

Vice versa, and in accordance with the literature on cell migration, the frequency of CD3+CD8+ lymphocytes was increased in the MIG fraction of HC cells, but not in the MIG fraction of SSc lymphocytes (43 (14%) v 29 (15%), respectively, p<0.04; table 2), indicating that SSc CD8+ lymphocytes undergo TEM, but to a lesser degree than SSc CD4+ or HC CD8+ T cells.

Rise in the CD4/CD8 ratio in migrated SSc lymphocytes

In SSc, reports on changes in the distribution of T cell subsets suggested a decreased number of CD3+ T cells and an increased CD4/CD8 ratio in peripheral blood which is, at least in part, due to a greater resistance of CD4+ lymphocytes to apoptotic stimuli. Interestingly, the CD4/CD8 ratio in 8/12 patients with SSc (to 3.27 (1.54)) but decreased in 10/11 HC (to 1.62 (0.93), p<0.002 calculated by Fisher’s exact test; p<0.006 in unpaired t test; table 2, fig 3).

Table 2 Distribution of CD3+CD4+ cells, CD3+CD8+ cells, and the CD4/CD8 ratio

<table>
<thead>
<tr>
<th></th>
<th>% CD3+CD4+</th>
<th>% CD3+CD8+</th>
<th>CD4/CD8</th>
</tr>
</thead>
<tbody>
<tr>
<td>HC</td>
<td>69 (16)</td>
<td>28 (9)</td>
<td>2.56 (1.13)</td>
</tr>
<tr>
<td>SSc</td>
<td>69 (16)</td>
<td>28 (9)</td>
<td>2.56 (1.13)</td>
</tr>
<tr>
<td>Ex vivo</td>
<td>68 (11)</td>
<td>29 (10)</td>
<td>2.56 (1.13)</td>
</tr>
<tr>
<td>NAD</td>
<td>71 (8)</td>
<td>28 (9)</td>
<td>2.76 (0.89)</td>
</tr>
<tr>
<td>BND</td>
<td>58 (13)</td>
<td>42 (18)</td>
<td>1.66 (1.04)</td>
</tr>
<tr>
<td>MIG</td>
<td>56 (14)*</td>
<td>29 (15)*</td>
<td>1.62 (0.93)*</td>
</tr>
</tbody>
</table>

Results are shown as mean(SD).

NAD, non-adherent; BND, bound; MIG=migrated.

*Denotes p<0.05 (unpaired t test) between SSc and HC lymphocyte fractions.
Rise in the CD4/CD8 ratio in migrated SSc lymphocytes. The CD4/CD8 ratio in patients with SSc was only slightly raised ex vivo (p = NS), but increased in 8/12 patients with SSc and decreased in 10/11 HC, leading to a significantly raised CD4/CD8 ratio in migrated lymphocytes of patients with SSc when compared with HC (for details see table 2).

Increased HLA-DR positive cells among migrated SSc CD4+ lymphocytes

Among freshly isolated lymphocytes and the NAD fraction, we found low frequencies of HLA-DR positive CD4+ lymphocytes in both HC (5 (3)% and 4 (2)%, respectively) and SSc (7 (6)% and 6 (5)%, respectively; table 3).

In HC the frequencies of CD4+DR+ lymphocytes were higher in the BND fraction (10 (7)%), and in the MIG fraction (14 (10)%). In SSc, we found an even more pronounced increase of CD4+DR+ lymphocytes in the BND fraction (14 (12)%) and a further increase in the MIG fraction (31 (23)%, p < 0.04 when compared with HC).

The frequencies of CD4+CD25+ were similar for SSc and HC: 19 (13)% and 13 (6)%, respectively (p = NS) in the PBMC analysed ex vivo before TEM and 31 (38)% and 36 (37)% respectively (p = NS) in the MIG population. In addition, also CD4+CD69+ cell frequencies tended to be higher among migrated lymphocytes than ex vivo in SSc (table 3).

CD45Ro is highly expressed among migrated CD4+ lymphocytes

In HC and SSc, the proportions of CD45Ro+ cells among the CD4+ population in the MIG fraction amounted to 74 (9)% in HC and 77 (10)% in SSc. This was higher than in the NAD (57 (12)% and 59 (16)%, respectively, p < 0.02 for both) and slightly higher than in the BND fraction (65 (16)% and 70 (15)%, respectively, p = NS for both).

CD54 [ICAM-1] is increased on migrated CD4+ lymphocytes

Similar frequencies of CD4+CD54+ lymphocytes were present ex vivo and in the NAD fraction of both HC (7 (6)% and 6 (5)%, respectively) and SSc (6 (7)% and 4 (4)%, respectively). However, the proportion of CD4+CD54+ cells increased in the BND fractions of HC and SSc (15 (11)% v 16 (12)%, p < 0.02) and p < 0.04, respectively) and in the MIG fraction, with a more pronounced increase among SSc cells (26 (20)% v 33 (23)%, p < 0.02 and p < 0.003, respectively), consistent with previous findings in migrated lymphocytes.17 18

Adhesion molecules are expressed on migrated lymphocytes

It has been shown that infiltrating lymphocytes in vivo12 and migrated lymphocytes in vitro highly express various adhesion molecules.19 In accordance with these findings, we found in both HC and SSc a high expression of CD11a (LFA-1; 86 (23)% and 79 (32)% respectively), CD44 (H-CAM; 96 (10)% and 97 (8)%, respectively), CD29 (VLA β chain; 89 (8)% and 93 (6)%, respectively), and CD49d (integrin αv; 73 (47)% and 75 (14)%, respectively) among migrated CD3+CD4+ cells. Differences between HC and SSc or within the different lymphocyte fractions were not significant.19

Comparison of different patient subgroups

We found no relevant differences in the TEM or the distribution of lymphocyte subsets between patients with diffuse or limited disease. We also found no significant differences when analysing patients with cutaneous disease <5 years or >5 years, nor when comparing patients undergoing photopheresis with those receiving other forms of treatment.

DISCUSSION

The data presented show an increased transendothelial migration of SSc T lymphocytes and a particular propensity of CD4+ T cells towards migration. These observations contribute to the understanding of how the increased CD4/CD8 ratio in perivascular infiltrates of patients with SSc may arise. Moreover, we investigated the lymphocytic expression of activation markers and adhesion molecules in these patients.

Indeed, the migration of PBMC through an human endothelial monolayer was increased in SSc in comparison with healthy people. Moreover, this increased percentage of migratory capacity of CD4+ lymphocytes from HC was mainly due to a surprisingly high proportion of CD4+ cells within the migrated CD3+ fraction. In contrast with SSc, we found an increased migratory capacity of CD8+ lymphocytes from HC, corresponding to previous findings.17 18 Thus, while the ratio of CD4/CD8 cells

| Table 3: Expression of activation markers on CD3+CD4+ lymphocytes |
|-----------------|-----------------|-----------------|-----------------|-----------------|-----------------|
	% CD4-HLA-DR+	% CD4-CD25+	% CD4-CD69+	% CD4-CD45Ro+				
Ex vivo	5 (3)	7 (6)	13 (6)	19 (13)	7 (9)	6 (5)	61 (17)	66 (15)
NAD	4 (2)	6 (5)	13 (3)	21 (12)	3 (3)	6 (6)	57 (12)	59 (16)
BND	10 (7)	14 (12)	16 (9)	28 (19)	8 (10)	3 (3)	65 (16)	70 (15)
MIG	14 (10)*	31 (23)*	36 (37)	31 (38)	23 (24)	4 (6)	74 (9)	77 (10)

Results are shown as mean (SD).
NAD, non-adherent; BND, bound; MIG, migrated.
*Denotes p < 0.05 (unpaired t test) between SSc and HC lymphocyte fractions.
declined among migrated T cells of HC, it even increased among migrated cells of patients with SSc. This finding is therefore apparently similar to the situation in scleroderma skin lesions, and, indeed, practically all our patients had signs of active skin involvement. In contrast, the processes responsible for the accumulation of CD8+ lymphocytes in SSc lesions are probably based on other mechanisms. These may include tumour necrosis factor α induced effects of primary human alveolar epithelial cells on lymphocyte migration and differential effects of lung endothelial cells or, more likely, chemokines, which are all outside the scope of the present investigations.

Interestingly, many of the migrating CD4+ cells in SSc exhibited an activated, HLA-DR positive phenotype and highly expressed adhesion molecules. Although we cannot completely exclude the possibility that antigenic interactions between T cells and EC activate the T cell and lead to a concomitant increase in migratory capacity, we regard this as unlikely for several reasons: (a) T cells show signs of activation in peripheral blood; (b) if local activation were occurring, the total number of T cells with activated phenotypes ought to increase. This, however, was not the case. Rather, while proportions of activated T cells increase among the migrating populations, they decrease among the NAD population (table 3); (c) in human T cells, HLA-DR is a late marker of activation and its expression becomes detectable 72 hours after activation with the potent activator phytohaemagglutinin and exceeds pre-activation levels 6 days after activation with tetanus toxoid; (d) we observed higher frequencies of HLA-DR+ lymphocytes mainly among migrated SSc lymphocytes and to a much lesser degree among HC lymphocytes.

Our data thus suggest that activated CD3+CD4+ lymphocytes as found in SSc peripheral blood are prone to migrate through vessel walls. This increased migratory capacity is likely to contribute to the perivascular accumulation of CD4+ lymphocytes, which is typical for the cutaneous manifestations in SSc. The data further suggest that T cells from patients with SSc are activated systemically, rather than locally, and migrate to the skin after such activation. Because the EC were derived from the umbilical cord, primary disease related EC changes could not account for the migratory behaviour of T cells.

In the context of these T cell abnormalities, it is of interest, that fibroblasts actively producing proX (1) and proX (III) collagen mRNAs are located next to the area of T cell infiltration, at least in localised SSc. Therefore, conceivably, these activated T cells may in turn have a causal relationship with fibrosis.

In vivo, EC apoptosis mediated by antibodies has been seen in SSc and might facilitate the diapedesis of immune cells. To avoid endothelial damage and subsequent EC monolayer leakage in vitro, we kept the system serum-free and the migration time short. The confluence of the EC monolayer was carefully observed in each migration experiment. Moreover, perivascular lymphocytic infiltrates are found in SSc even in areas where endothelial damage is not evident, suggesting that lymphocytes also actively migrate through vessel walls.

Taken together, our observations suggest that, in addition to locally derived pro-migratory signals from fibroblasts and an increased permeability of damaged endothelium, an increased migratory capacity of CD4+ lymphocytes may promote the formation of cutaneous infiltrates in scleroderma. Our findings therefore provide a further step towards a more profound understanding of these intertwined processes in SSc. Targeting cell migration and thus preventing T cells from interfering with local cells may contribute to an interesting therapeutic approach.

ACKNOWLEDGEMENTS

We thank Mrs Daniela Eiselböck and Mrs Irene Radza for their help in the preparation and culture of EC, and Dr Günter Steiner for performing the line immunoassay.

Authors' affiliations

G H Stummler, M Aringer, J Grisar, C W Steiner, J S Smolen, W B Graninger, Department of Rheumatology, Internal Medicine III, University of Vienna, Vienna, Austria

R Knobler, Department of Special Dermatology, Dermatology, University of Vienna, Vienna, Austria

REFERENCES

18 White B, YurovskyVV. Obligational expansion of V delta 1+ gamma/delta T cells in systemic sclerosis patients. Ann NY Acad Sci 1995; 756:382–91

endothelial cells obtained from different passages. Pathobiology 1995;63:83–92.
40 Eghtesad M, Jackson HE, Cunningham AC. Primary human alveolar epithelial cells can elicit the transendothelial migration of CD14+ monocytes and CD3+ lymphocytes. Immunology 2001;102:157–64.