Combined intravenous methotrexate and cyclophosphamide for refractory childhood lupus nephritis

T J A Lehman, B S Edelheit, K B Onel

METHODS
All five treated children fulfilled the American College of Rheumatology criteria for a definite diagnosis of SLE. All had renal biopsy proven class IV DPGN. Initial treatment was 750–1000 mg/m² of IV CYTX per dose given monthly for 7 months and then every 3 months for an additional 30 months (17 total doses over 36 months according to our published protocol) for all children. Four children had completed this regimen. The fifth child had received 11 doses of IV CYTX (monthly×7 doses and every 3 months×4) before developing DPGN.

All children were selected for combined IV CYTX and IV MTX treatment because of new (one case) or recurrent (four cases) worsening of haematuria and proteinuria with decreasing serum albumin, haemoglobin, and serum complement C3 and C4 levels, unresponsive to doubling the daily prednisone dosage. Before starting combined IV CYTX and IV MTX treatment all children were given folic acid 1 mg daily, which was continued throughout. Informed consent was obtained in all cases.

Treatment was begun with IV CYTX at 750–1000 mg/m² in 150 ml D5W over 1 hour. Four hours later patients received IV MTX 50 mg/m² in 100 ml D5W over 4 hours. IV CYTX was continued at the maximum dose tolerated during the initial treatment with IV CYTX alone. The IV MTX dosage was increased to 100 mg/m², then 150 mg/m², and then 300 mg/m² as tolerated by each child. If the absolute neutrophil count fell below 0.5×10⁹ neutrophils/l 10–14 days after treatment, the next dose of IV MTX was reduced by 25% and the lower dose was maintained for the remainder of the study. No child received more than 300 mg/m² of IV MTX. The IV CYTX dose was held constant throughout.

Treatment with combined IV CYTX and IV MTX was continued at monthly intervals for 9 months. All children were observed in the hospital for at least 12 hours before IV CYTX and IV MTX for evidence of fever, irregular vital signs, or other findings suggesting infection. Samples were obtained for complete blood count (CBC), erythrocyte sedimentation rate (ESR), Na, K, Cl, CO₂, blood urea nitrogen (BUN), aspartate aminotransferase (AST), alanine aminotransferase (ALT), creatinine (Cr), antinuclear antibodies (ANA), C3, and C4 at the time of admission. Twenty four hour urine for protein, Cr, and CrCl was also obtained. All children were treated in hospital and received intravenous hydration (2 l/m²/24 h D5 0.5 NS) for 12 hours before and 24 hours after IV CYTX, and intravenous MESNA for 12 hours after the IV CYTX.

Fourteen days after combined

Abbreviations: ALT, alanine aminotransferase; ANA, antinuclear antibodies; AST, aspartate aminotransferase; BUN, blood urea nitrogen; CBC, complete blood count; Cr, creatinine; CYTX, cyclophosphamide; DPGN, diffuse proliferative glomerulonephritis; ESR, erythrocyte sedimentation rate; IV, intravenous; MTX, methotrexate; SLE, systemic lupus erythematosus; SLEDAI, SLE disease activity index
IV CYTX and IV MTX all children were evaluated in the outpatient department and the determination of CBC, ESR, Na, K, Cl, CO₂, BUN, AST, ALT, Cr, ANA, C₃, and C₄ repeated.

Because of the small sample size statistical analysis was performed using one tailed t-tests. This was consistent with our hypothesis that IV CYTX and IV MTX treatment would be associated with improvement.

RESULTS

Table 1 shows that all children improved with combined IV CYTX and IV MTX treatment. There were statistically significant reductions in the mean SLE disease activity index (SLEDAI) score (fig 1) and mean daily prednisone dose (fig 2) and statistically significant increases in mean serum albumin, total protein, and serum C₃ level. The mean serum creatinine level remained in the normal range.

Side effects of combined IV CYTX and IV MTX treatment included leucopenia in 4/5 and mild mucositis 2/5 children. The leucopenia occurred at an MTX dose of 150 mg/m² in two children and at 300 mg/m² in two others. In all cases the leucopenia resolved when the dose was reduced. One child required IV acyclovir because of recurring Herpes zoster infection. Two children required admission for observation because of fever and neutropenia between treatments with IV CYTX and IV MTX but were without infection.

All children completed nine treatments with combined IV CYTX and IV MTX. All remain stable a mean of 4 years (range 1–10) after treatment, without recurrent active nephritis or evidence of IV CYTX and IV MTX related toxicity.

DISCUSSION

DPGN secondary to SLE is a severe life threatening condition. Over the past 20 years the prognosis for children with DPGN has dramatically improved. This is due in part to the advent of improved paediatric intensive care units, improved antibiotic regimens, and the systematic use of IV CYTX. Systematic use of a 3 year course of IV CYTX has dramatically improved. This is due in part to occurred in 6/42 children (14%) who completed three years of our experience recurrent DPGN related disease activity has been very successful for most children with DPGN. However, in our experience recurrent DPGN related disease activity has occurred in 6/42 children (14%) who completed three years of IV CYTX.

<table>
<thead>
<tr>
<th>Variable</th>
<th>Before treatment</th>
<th>After treatment</th>
<th>Paired t test (p value)</th>
</tr>
</thead>
<tbody>
<tr>
<td>SLEDAI</td>
<td>13.8 (7.0)</td>
<td>4.4 (3.6)</td>
<td><0.01</td>
</tr>
<tr>
<td>Serum albumin (g/l)</td>
<td>28 (11)</td>
<td>41 (6)</td>
<td><0.025</td>
</tr>
<tr>
<td>Total protein (g/l)</td>
<td>52 (12)</td>
<td>67 (7)</td>
<td><0.025</td>
</tr>
<tr>
<td>C₃ (g/l)</td>
<td>0.5 (0.1)</td>
<td>0.9 (0.4)</td>
<td><0.025</td>
</tr>
<tr>
<td>Serum creatinine (μmol/l)</td>
<td>100 (60)</td>
<td>80 (40)</td>
<td>NS</td>
</tr>
<tr>
<td>Prednisone (mg/day)</td>
<td>27.6 (7.8)</td>
<td>12.5 (5.0)</td>
<td><0.01</td>
</tr>
</tbody>
</table>

Results are shown as mean (SD).

REFERENCES

Clinical Evidence—Call for contributors

Clinical Evidence is a regularly updated evidence-based journal available worldwide both as a paper version and on the internet. Clinical Evidence needs to recruit a number of new contributors. Contributors are health care professionals or epidemiologists with experience in evidence-based medicine and the ability to write in a concise and structured way.

Currently, we are interested in finding contributors with an interest in the following clinical areas:
- Altitude sickness
- Autism
- Basal cell carcinoma
- Breast feeding
- Carbon monoxide poisoning
- Cervical cancer
- Cystic fibrosis
- Ectopic pregnancy
- Grief/bereavement
- Halitosis
- Hodgkins disease
- Infectious mononucleosis (glandular fever)
- Kidney stones
- Malignant melanoma (metastatic)
- Mesotheioma
- Myeloma
- Ovarian cyst
- Pancreatitis (acute)
- Pancreatitis (chronic)
- Polymyalgia rheumatica
- Post-partum haemorrhage
- Pulmonary embolism
- Recurrent miscarriage
- Repetitive strain injury
- Scoliosis
- Seasonal affective disorder
- Squint
- Systemic lupus erythematosus
- Testicular cancer
- Varicoccele
- Viral meningitis
- Vitiligo

However, we are always looking for others, so do not let this list discourage you.

Being a contributor involves:
- Appraising the results of literature searches (performed by our Information Specialists) to identify high quality evidence for inclusion in the journal.
- Writing to a highly structured template (about 2000–3000 words), using evidence from selected studies, within 6–8 weeks of receiving the literature search results.
- Working with Clinical Evidence Editors to ensure that the text meets rigorous epidemiological and style standards.
- Updating the text every eight months to incorporate new evidence.
- Expanding the topic to include new questions once every 12–18 months.

If you would like to become a contributor for Clinical Evidence or require more information about what this involves please send your contact details and a copy of your CV, clearly stating the clinical area you are interested in, to Claire Folkes (cfolkes@bmjgroup.com).

Call for peer reviewers

Clinical Evidence also needs to recruit a number of new peer reviewers specifically with an interest in the clinical areas stated above, and also others related to general practice. Peer reviewers are health care professionals or epidemiologists with experience in evidence-based medicine. As a peer reviewer you would be asked for your views on the clinical relevance, validity, and accessibility of specific topics within the journal, and their usefulness to the intended audience (international generalists and health care professionals, possibly with limited statistical knowledge). Topics are usually 2000–3000 words in length and we would ask you to review between 2–5 topics per year. The peer review process takes place throughout the year, and our turnaround time for each review is ideally 10–14 days.

If you are interested in becoming a peer reviewer for Clinical Evidence, please complete the peer review questionnaire at www.clinicalevidence.com or contact Claire Folkes (cfolkes@bmjgroup.com).