MATTERS ARISING

On the origin of rice bodies with apatite crystals

We read with interest the article of Li-Yu et al on synovial rice bodies containing calcium hydroxyapatite crystals. From their findings the authors assume that the pathogenesis of this “apparently” rare coincidence of fibrin with bone-like apatite crystals remains unexplained. A brief case report may give insight into the development of such a coincidence. A specimen taken at operation from the knee joint of a 55 year old woman with longstanding seropositive rheumatoid arthritis and rapid joint destruction owing to ischaemic bone necroses of the femoral and tibial compartment exhibited macroscopically a synovial membrane entirely covered with villous fibrin. Light microscopy showed villi of older fibrin including a lot of tissue fragments (fig 1A). Sections stained with haematoxylin and eosin showed that these particles consisted of irregular shaped bone sequesters and basophilic granules as well as shreds of hyaline cartilage. In alizarin red stained sections the bone fragments were usually faintly stained (fig 1B). However, a multitude of tiny granules were characterised by a strong stainability with this “calcium dye” (fig 1C). From this observation it can be deduced that bone debris from osteonecrotic areas gained access to the synovial membrane via the synovial fluid. The shreds of bone debris induced a preferentially “fibrinous inflammation”, leading to villi with entrapped cartilage and bone fragments of different size as well as tiny bone particles appearing as alizarin red granules.

With respect to the development of rice bodies of fibrin with enclosed “apatite crystals” it may be assumed that parts of the villous fibrin with bone particles can become detached from their synovial adherence and “reappear” in the synovial fluid with the formation of rice bodies. The morphological findings described in the case report are an unusual major form of fibrinous debris synovitis due to large bone necroses. However, minor forms of this synovial reaction, originally described by Freund in 1927, are not rare, and histological investigations on synovial membranes from patients with advanced rheumatoid arthritis disclosed intrasynovial bone and cartilage fragments in about 50% of patients. A fibrinous debris synovitis also often occurs in osteoarthritis. This may indicate that the opportunity for the appearance of rice bodies with bone derived apatite crystals owing to bone “abrasion” in advanced osteoarthritis or
Angiopoietin expression in synovial membranes from patients with RA

I should like to comment on a recent paper in the *Annals of the Rheumatic Diseases*, which demonstrates the expression of angiopoietin-1 in the synovium of patients with rheumatoid arthritis (RA). Angiopoietin-1 is demonstrated in most of the RA synovial membranes examined by immunohistochemistry, but there was a marked discrepancy in the amount and distribution of angiopoietin-1 at the mRNA level (as demonstrated by in situ hybridisation) compared with that seen at the protein level (as demonstrated by immunohistochemistry). This was not commented on by the authors of the paper but is rather surprising, particularly as such a discrepancy is not seen even with cytokine expression, which has a lable mRNA due to AUA-rich areas of the 3’ untranslated region. It is not stated whether angiopoietin-1 mRNA has similar such regions and whether its mRNA is lable, but even this is unlikely to explain the discrepancy between the results of in situ hybridisation and immunohistochemistry for angiopoietin-1.

Usual sections of RA synovial membranes, the authors state that both CD68 positive macrophages and CD68 negative fibroblasts in the lining layer of the synovium contain angiopoietin-1, yet this is not very evident in the images displayed in fig 1. It surely would have been preferable to perform dual immunohistochemistry for CD68 and angiopoietin-1, or even to combine in situ hybridisation for angiopoietin-1 mRNA with immunohistochemistry for CD68 to demonstrate more definitively which cells in the RA synovial membrane are producing angiopoietin-1.

M D Smith
Rheumatology Research Unit, Repatriation General Hospital, Dawes Road, Daw Park, South Australia

Reference

Authors’ reply
We thank Dr Smith for his interest in our study and for his comments about the differences between protein levels of angiopoietin-1 in RA synovium detected by immunohistochemistry and mRNA levels for angiopoietin-1 detected by in situ hybridisation. Immunohistochemical analysis frequently showed angiopoietin-1 protein in the synovial lining layer, as well as in cells within the sublining tissues, both in perivascular areas and in areas remote from vessels. Analysis of angiopoietin-1 mRNA expression by in situ hybridisation showed mRNA in these sites, but at low levels and with significantly less frequent detection of mRNA within the synovial lining layer. All the tissue samples evaluated by in situ hybridisation in this study, however, were paraffin embedded samples. It is known that during the processing of tissues into paraffin blocks, mRNA can be lost, even when care is taken to avoid RNAse contamination. Owing to the limitations of this technique, we went on to examine both mRNA and protein expression in cultured synovial fibroblasts in vitro. We demonstrated angiopoietin-1 mRNA expression by northern blot analysis in unstimulated, as well as in tumour necrosis factor α-stimulated, synovial fibroblasts, and confirmed the production of angiopoietin-1 protein by these cells using an enzyme linked immunosorbsent assay (ELISA).

We believe that the serial sections in fig 1 of our previous paper show that angiopoietin-1 protein is present in both CD68 expressing and non-expressing cells. Neither serial sections comparing angiopoietin-1 expression by in situ hybridisation and immunohistochemistry nor dual immunohistochemistry for CD68 and angiopoietin-1 is likely to yield new information.

P Oettgen, E M Gravallese
Harvard Institutes of Medicine, 4 Blackfan Circle, USA
Correspondence to: Professor J P Oettgen; joettgen@caregroup.harvard.edu

Reference

BOOK REVIEW
Pathology and pathobiology of rheumatic diseases. 2nd ed

Here is an impressive tour de force which could also be called “40 years’ experience in microscopy of tissues from rheumatic disease patients”. The author, born in 1929, has probably seen more joint specimens under his microscope than anyone else and he is still heading a WHO centre of joint pathology in Mainz, Germany. This work is essentially based on his personal observations of histology and electron microscopy on biopsy, surgical, and perhaps postmortem material sent for diagnosis to his institute. In his book Fassbender deals in a detailed manner with the diverse and complicated nature of the rheumatic diseases and does not at any time attempt to be a comprehensive guide to the modern morphological state of the art. His book is essentially a study of the pathology of the rheumatic diseases and is directed towards the clinician, the pathologist, and the therapist.

In the introduction, the author identifies the two main problems of diagnostic pathology: the differentiation of the coincident disease from the rheumatoid arthritis and “coxarthrosis” and the distinction of osteoarthritis from rheumatoid arthritis. He points out that in this field “it is also possible to discern features distinguishing each disease”.

Fassbender’s book is divided into two parts. The first part deals with the general aspects of the rheumatic diseases, while the second part treats the individual diseases in detail. In the first part, Fassbender provides a comprehensive overview of the various rheumatic diseases, including their clinical features, epidemiology, and pathogenesis. He also discusses the histological and immunohistochemical findings in these diseases, as well as the current understanding of their pathogenesis.

The second part of the book focuses on the individual diseases, and Fassbender provides a detailed analysis of their pathology and pathobiology. He covers a wide range of diseases, including rheumatoid arthritis, osteoarthritis, and juvenile chronic arthritis, among others. Fassbender’s approach is thorough and comprehensive, and he provides an in-depth analysis of the key histological and immunohistochemical features of each disease. He also discusses the current management of these diseases, as well as the controversies and challenges in the field.

Overall, Fassbender’s book provides a comprehensive and up-to-date review of the pathology and pathobiology of the rheumatic diseases. It is a valuable resource for clinicians, pathologists, and researchers in the field, and it is a must-read for anyone interested in the diagnosis and treatment of these diseases.

References

Authors’ reply
We thank Dr Smith for his interest in our study and for his comments about the differences between protein levels of angiopoietin-1 in RA synovium detected by immunohistochemistry and mRNA levels for angiopoietin-1 detected by in situ hybridisation. Immunohistochemical analysis frequently showed angiopoietin-1 protein in the synovial lining layer, as well as in cells within the sublining tissues, both in perivascular areas and in areas remote from vessels. Analysis of angiopoietin-1 mRNA expression by in situ hybridisation showed mRNA in these sites, but at low levels and with significantly less frequent detection of mRNA within the synovial lining layer. All the tissue samples evaluated by in situ hybridisation in this study, however, were paraffin embedded samples. It is known that during the processing of tissues into paraffin blocks, mRNA can be lost, even when care is taken to avoid RNAse contamination. Owing to the limitations of this technique, we went on to examine both mRNA and protein expression in cultured synovial fibroblasts in vitro. We demonstrated angiopoietin-1 mRNA expression by northern blot analysis in unstimulated, as well as in tumour necrosis factor α-stimulated, synovial fibroblasts, and confirmed the production of angiopoietin-1 protein by these cells using an enzyme linked immunosorbsent assay (ELISA).

We believe that the serial sections in fig 1 of our previous paper show that angiopoietin-1 protein is present in both CD68 expressing and non-expressing cells. Neither serial sections comparing angiopoietin-1 expression by in situ hybridisation and immunohistochemistry nor dual immunohistochemistry for CD68 and angiopoietin-1 is likely to yield new information.

P Oettgen, E M Gravallese
Harvard Institutes of Medicine, 4 Blackfan Circle, USA
Correspondence to: Professor J P Oettgen; joettgen@caregroup.harvard.edu
molecular interpretations and another dimension of authenticity would have been added had clinical data been provided about the donors of the specimens. This work will assume a place of honour on my bookshelf.

F A Wollheim
Lund University Hospital, Sweden
Frank.Wollheim@reum.lu.se

References

CORRECTION

Algescic action of acetaminophen and rofecoxib on knee pain and function (Ann Rheum Dis 2003;62(suppl I): 484 (ABO435)).
The last author was omitted from this abstract. The full author list should have been as follows:

H Sprott,1 B Shen,3 B A Michel,3 D Uebelhart,1 R E Gay,1 S Gay,1 H Sprott1 Rheumatology and Institute of Physical Medicine, University Hospital Zurich, Zurich, Switzerland.

FORTHCOMING EVENTS

25th Annual Meeting of the American Society for Bone and Mineral Research (ASBMR)
19–23 September 2003; Minneapolis, Minnesota, USA
Tel: +1 202 367 1161
Fax: +1 202 367 2161
Email: asbmr@dcsba.com
Website: www.asbmr.org

10th European Pediatric Rheumatology Congress
2–5 October 2003; Stresa, Italy
Contact: Organising Secretariat, ECON srl, Via della Moscova 16, 20121 Milan, Italy
Tel: +39 022 900 3745
Fax: +39 022 900 5790
Email: econsrl@tin.it
Website: www.pres.org.uk

International Congress on Arthritis in the Elderly
9–11 October 2003; Milan, Italy
New perspectives in diagnosis and treatment
Contact: Organising Secretariat: Elena Romero Tel: +39 02 65 71 200
Fax: +39 02 65 71 270
Email: edrhreum@oic.it

7th EULAR Sonography Course
9–12 October 2003; Rome, Italy
An introductory and practical course on musculoskeletal ultrasonography
Scientific secretariat: Professor Guido Valesini Email: annamaria.lagroco@uniroma1.it
Contact: Organising secretariat: Michela Civay, H Sprott, F A Wollheim, F Rorth, M A Michel, B Bresnihan, E Madigan, S Gay, H Sprott1 1
Rheumatology and Institute of Physical Medicine, University Hospital Zurich, Zurich, Switzerland.

OARSI World Congress on Osteoarthritis
12–15 October 2003; Berlin, Germany
Tel: +1 202 367 1177
Fax: +1 202 367 2177
Email: oarsi@oarsi.org
Website: www.oarsi.org

American Back Society: Advanced Diagnosis and Treatment for Neck and Back Pain 2004
11–15 November 2003; Las Vegas, Nevada
24 CMF category 1 units
Tel: +1 510 536 9929
Fax: +1 510 536 1812
Email: info@americanbacksoc.org
Website: http://www.amERICANbacksoc.org

Fourth International Symposium on Clinical and Economic Aspects of Osteoporosis and Osteoarthritis
14–17 November 2003; Nice, France
Contact: Organisation Secretariat, F JF Communication, 108 boulevard G Kleyer, 4000 Liège, Belgium
Tel: +32 (4) 254 12 25
Fax: +32 (4) 254 12 90
Email: yoland@piettecommunication.com
Website: http://nice.piettecommunication.com

2nd International Forum on Geronto-Rheumatology
27–29 November 2003; Amsterdam, The Netherlands
Contact: Erna Kleinjan, project manager Mark Two Communications, PO Box 358, 3830 AK Leusden
Tel: +31 33 434 5730
Fax: +31 33 434 5720
Email: ekleinjan@marktwo.nl
Website: www.marktwo.nl

IOF World Congress on Osteoporosis
14–18 May 2004; Rio de Janeiro, Brazil
Abstract deadline 14 November 2003
IOF awards are available for scientists: IOF Claes Christiansen Research Fellowship: €64 000
IOF Servier Young Investigator Fellowship: €40 000
Contact: Congress Secretariat at info@osteofound.org
Website: www.osteofound.org

XIIth International Conference on Behçet’s Disease
27–31 October 2004; Antalya, Turkey
Contact: Congress Secretariat, Figur Congress and Organization Services Ltd. STL, Ayazmadere Cad. Karadut Sok. No: 7 80088 Dikilitas, Istanbul, Turkey
Tel: +90 (0212) 258 6020
Fax: +90 (0212) 258 6078
Email: behcet2004@figur.net
Website: www.behcet2004.org

4th International Congress on Autoimmunity
3–7 November 2004, Budapest, Hungary
Deadline for receipt of abstracts: 20 June 2004
Contact: 4th International Congress on Autoimmunity, Kenes International—Global Congress Organisers and Association Management Services, 17 rue du Cendrier, PO Box 1726, CH-1211 Geneva 1, Switzerland
Tel: +41 22 908 0488
Fax: +41 22 908 3801
Email: autoim04@kenes.com
Website: www.kenes.com/autoim2004

Future EULAR congresses
9–12 June 2004; EULAR 2004; Berlin, Germany
8–11 June 2005; EULAR 2005; Vienna, Austria
21–24 June 2006; EULAR 2006; Amsterdam, The Netherlands

Future ACR meetings
24–28 October 2003; 67th Annual Scientific Meeting; Orlando, Florida
16–21 October 2004; 68th Annual Scientific Meeting; San Antonio, Texas

www.annrheumdis.com