Repeated infusions of infliximab, a chimeric anti-TNFα monoclonal antibody, in patients with active spondyloarthropathy: one year follow up

E Kruithof, F Van den Bosch, D Baeten, A Herssens, F De Keyser, H Mielants, E M Veys

Background: In a pilot study, the anti-tumour necrosis factor α monoclonal antibody, infliximab, induced a rapid and significant improvement in global, peripheral, and axial disease manifestations of patients with active spondyloarthropathy.

Objective: To determine whether repeated infusions of infliximab would effectively and safely maintain the observed effect.

Methods: Safety and efficacy of a maintenance regimen (5 mg/kg infliximab every 14 weeks) was evaluated using the measurements reported in the pilot study. Of the 21 patients, 19 completed the one year follow up for efficacy; two patients changed to another dosing regimen after week 12 owing to partial lack of efficacy. However, they are still being followed up for safety analysis.

Results: After each re-treatment a sustained significant decrease of all disease manifestations was observed. Before re-treatment, symptoms recurred in 3/19 (16%) at week 20, in 13/19 (68%) at week 34, and in 15/19 (79%) at week 48. No withdrawals due to adverse events occurred. Twelve minor infectious episodes were observed. Twelve patients (57%) developed antinuclear antibodies; in four of them (19%) anti-dsDNA antibodies were detected. However, no lupus-like symptoms occurred.

Conclusion: In this open study of infliximab in patients with active spondyloarthropathy, the significant improvement of all disease manifestations was maintained over a one year follow up period without major adverse events. Although recurrence of symptoms was noted in a rising number of patients before each re-treatment, no loss of efficacy was observed after re-treatment.

PATIENTS AND METHODS

Study design
This study was an extension protocol of the initial 12 week pilot study. The study design consisted of an induction regimen of three infusions of 5 mg/kg infliximab evaluated over 12 weeks. The treatment induced a rapid and significant improvement in global, peripheral, and axial disease manifestations in all 21 patients, without major side effects. Simultaneously, successful treatment of active AS was also reported in an open label trial of 11 patients. All patients of the initial open label trial were re-treated every 14 weeks with an infusion of 5 mg/kg infliximab. In this paper we report the safety and efficacy of this maintenance regimen.

Patient selection criteria
Patients with active SpA, fulfilling the European Spondylarthropathy Study Group criteria for SpA, were enrolled in the

Abbreviations: ANA, antinuclear antibodies; AS, ankylosing spondylitis; CRP, C reactive protein; ESR, erythrocyte sedimentation rate; PsA, psoriatic arthritis; RA, rheumatoid arthritis; SpA, spondyloarthropathies; TNFα, tumour necrosis factor α; uSpA, undifferentiated spondyloarthropathy; VAS, visual analogue scale
Patients with AS were classified according to the modified New York criteria. Disease modifying drugs were not allowed during the study.

Concurrent drugs

During this extension study, efforts were made to keep the dose and schedule of non-steroidal anti-inflammatory drugs or prednisolone, or both, stable; however, modifications were allowed at the discretion of the treating rheumatologist.

Drug administrations

Infliximab at a dose of 5 mg/kg in 250 ml NaCl 0.9% was prepared by the hospital pharmacy. The total dose was given over a period of at least two hours. Aseptic procedures were used during the preparation and administration of the study drug. Patients were re-treated every 14 weeks (weeks 20, 34, and 48). During this extension study, efforts were made to keep the disease modifying drugs were not allowed during the study.

Clinical evaluation

Evaluation of efficacy was performed at weeks 20, 22, 28, 34, 36, 42, 48, and 50 using the same measurements as reported in the open pilot study. In addition, patients were asked at each visit about recurrence of symptoms, including occurrence of night pain, morning stiffness, pain in peripheral joints, or axial pain.

Safety evaluation

During the infusion the patient was monitored for adverse effects, and vital parameters (blood pressure, pulse, temperature) were measured. At each visit patients were asked about side effects, and routine laboratory tests were performed, which consisted of a full blood count with white blood cell differentiation, and biochemical screening, including electrolyte, urea, creatinine, total protein, liver function tests, and urine analysis. Furthermore, screening for antinuclear antibodies (ANA) by indirect immunofluorescence on HEp-2 cells and, when positive, additional testing for anti-double stranded DNA antibodies (anti-dsDNA) by the *Crithidia luciliae* assay test was performed on each visit. ANA and anti-dsDNA were considered positive in a patient when present on at least two occasions.

Statistical analysis

Results were presented as the median and range. Significance of the change from baseline was measured by the Wilcoxon signed ranks test (*p*<0.05).

RESULTS

Table 1 shows the demographic and descriptive characteristics of the 21 patients who were enrolled in the pilot study. Three patients were classified as having AS with only axial involvement, seven with AS and peripheral arthritis, nine with PsA, and two with uSpA. Of the nine patients with PsA, one also fulfilled the modified New York criteria for AS.

Nineteen patients completed the one year follow up for efficacy. Two patients (one patient with PsA, one with uSpA) changed to another dosing regimen with infliximab owing to partial lack of efficacy. One patient with uSpA had a disease flare at week 12 (patient global assessment of disease activity on a 100 mm visual analogue scale (VAS) 73 mm, four swollen joints, C reactive protein (CRP) 217.6 mg/l). After re-treatment with infliximab (5 mg/kg) at week 16, the patient’s disease remained stable, but the swollen joint count and the CRP did not improve. Because there was a new relapse at week 20, it was decided to give infliximab monthly (weeks 22, 26, 30, 34, 38, 42, 46, 50). Moreover as this patient had had a partial response to methotrexate, it was decided to add methotrexate to the infliximab regimen. With this regimen the disease symptoms were adequately controlled (at week 52: VAS global patient score 2 mm, four swollen joints, CRP 5.1 mg/l).

The other patient, with polyarticular PsA, had a disease flare at week 16 (VAS global patient score 88 mm, six swollen joints, CRP 49.3 mg/l). After re-treatment with infliximab (5 mg/kg) at week 18 the patient’s disease remained stable, but the swollen joint count and CRP did not improve. Because there was a new relapse at week 30, it was decided to give infliximab monthly (weeks 30, 34, 38, 42, 46, 50), which controlled the disease symptoms adequately (at week 52: VAS global patient score 3 mm, three swollen joints, CRP 20.8 mg/l). However, these two patients remained in the follow up for safety evaluation.

Efficacy evaluation

Global (n=19) and peripheral (n=16) assessments were performed at weeks 20, 22, 28, 34, 36, 42, 48, and 50, and were compared with the baseline value. Axial assessments (n=11) were carried out at weeks 20, 34, 48, and 50. Table 2 summarises the results (data for weeks 28 and 42 are not shown). At week 50 a significant decrease (*p*<0.05) for all variables was observed, comparable with the effect seen at week 12. When the global assessments were analysed at different times, this significant decrease was maintained for all variables, except for erythrocyte sedimentation rate (ESR) and CRP at week 48, immediately before the third re-treatment, reflecting a trend towards relapse in some patients. A similar trend was noted for morning stiffness of the spine, spinal pain assessed by the patient on a VAS, and the Dougados functional index.

Figure 1 shows the evolution over this one year period for patient global assessment (100 mm VAS), CRP (mg/l), swollen joint count, and spinal pain assessment (100 mm VAS). When patients were asked about recurrence of symptoms, reflecting a possible disease relapse, 3/19 (16%) patients reported recurrence of symptoms at week 20, 13/19 (68%) reported a relapse at week 34, and 15/19 (79%) reported a relapse at week 48. However, two weeks after each re-treatment, at weeks 22, 36, and 50, none of the 19 patients reported such disease manifestations. The moment of recurrence of symptoms varied, though for most of these patients (3/3 at week 20, 12/13 at week 34, and 12/15 at week 48) symptoms occurred between weeks 10 and 14 after re-treatment. Nevertheless, none of them reported a full relapse comparable with baseline symptoms.

| Table 1 Demographic and descriptive characteristics of the study group. Values are given as median and range |
|----------------------------------|----------------|----------------|----------------|----------------|----------------|
| Total (n=21) | AS (n=3) | AS + PA (n=7) | PsA (n=9) | uSpA (n=2) |
| Age (years) | 49 (26–73) | 33 (26–65) | 44 (28–59) | 49 (30–73) | 48 (39–58) |
| Sex (M/F) | 17/4 | 3/0 | 6/1 | 6/3 | 2/0 |
| Disease duration (years) | 17 (1–42) | 15 (9–40) | 17 (10–33) | 19 (1–42) | 15 (3–28) |
| Swollen joint count (0–66) | 3 (0–12) | 0 | 2 (1–4) | 9 (1–12) | 9 (8–10) |
| Axial morning stiffness (min) | – | 90 (60–120) | 90 (30–240) | – | – |
| Axial night pain (0–3) | – | 3 (2–3) | 3 (1–3) | – | – |
| Sedimentation rate (mm/1st h) | 44 (10–101) | 26 (10–74) | 44 (10–101) | 27 (13–51) | 60 (29–92) |
| C reactive protein (mg/l) | 46 (7–290) | 35 (29–64) | 92 (7–290) | 34 (7–61) | 61 (30–91) |
| HLA-B27 (+/−) | 14/5 | 3/0 | 6/1 | 4/3 | 1/1 |

AS, ankylosing spondylitis; AS + PA, ankylosing spondylitis with peripheral arthritis; PsA, psoriatic arthritis; uSpA, undifferentiated spondyloarthritis.
Table 2

<table>
<thead>
<tr>
<th></th>
<th>Baseline</th>
<th>Week 12</th>
<th>Week 20</th>
<th>Week 22</th>
<th>Week 34</th>
<th>Week 36</th>
<th>Week 48</th>
<th>Week 50</th>
</tr>
</thead>
<tbody>
<tr>
<td>Global assessment (n=21)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Patient pain (0–100)</td>
<td>70 (23–100)</td>
<td>10 (1–86)***</td>
<td>14 (1–96)***</td>
<td>8 (1–37)***</td>
<td>29 (1–100)***</td>
<td>7.5 (1–37)***</td>
<td>26 (2–100)*</td>
<td>15 (1–60)**</td>
</tr>
<tr>
<td>Doctor global (0–100)</td>
<td>57 (12–79)</td>
<td>10 (5–75)***</td>
<td>14 (1–38)***</td>
<td>14 (1–32)***</td>
<td>20 (1–60)**</td>
<td>10 (5–23)***</td>
<td>21 (7–73)*</td>
<td>12 (4–20)**</td>
</tr>
<tr>
<td>CRP (mg/l)</td>
<td>46 (7–290)</td>
<td>6 (0–155)***</td>
<td>6 (0–64)***</td>
<td>3 (0–9)***</td>
<td>22 (0–204)**</td>
<td>2.8 (0–15.5)***</td>
<td>25.7 (0–253.7) NS</td>
<td>3.7 (0–26.7)**</td>
</tr>
<tr>
<td>Peripheral assessment (n=18)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pain peripheral joints (0–100)</td>
<td>75 (20–99)</td>
<td>12 (0–84)***</td>
<td>15 (4–31)***</td>
<td>–</td>
<td>28 (0–80)***</td>
<td>–</td>
<td>34 (1–91)*</td>
<td>11.5 (1–34)**</td>
</tr>
<tr>
<td>Tender joint count (0–68)</td>
<td>6 (1–18)</td>
<td>0 (0–5)***</td>
<td>1 (0–6)***</td>
<td>0.5 (0–5)***</td>
<td>0.5 (0–8)***</td>
<td>0 (0–4)***</td>
<td>1 (0–12)*</td>
<td>0 (0–4)**</td>
</tr>
<tr>
<td>Swollen joint count (0–68)</td>
<td>3.5 (1–12)</td>
<td>0 (0–7)***</td>
<td>0 (0–9)**</td>
<td>0 (0–10)***</td>
<td>0 (0–12)***</td>
<td>0 (0–6)***</td>
<td>0 (0–9)*</td>
<td>0 (0–6)**</td>
</tr>
<tr>
<td>Axial assessment (n=11)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Night pain (0–3)</td>
<td>3 (1–3)</td>
<td>1 (0–1)**</td>
<td>1 (0–2)*</td>
<td>–</td>
<td>1 (0–3)*</td>
<td>–</td>
<td>1 (0–3)*</td>
<td>0 (0–1)**</td>
</tr>
<tr>
<td>Morning stiffness (min)</td>
<td>90 (30–240)</td>
<td>5 (0–120)**</td>
<td>12.5 (0–120)**</td>
<td>–</td>
<td>15 (0–120)*</td>
<td>–</td>
<td>60 (0–120) NS</td>
<td>10 (0–200)*</td>
</tr>
<tr>
<td>Pain spine (0–100)</td>
<td>57 (4–95)</td>
<td>11 (1–60)**</td>
<td>15.5 (3–62)**</td>
<td>–</td>
<td>17 (0–81)*</td>
<td>–</td>
<td>22 (1–88) NS</td>
<td>10 (1–65)**</td>
</tr>
<tr>
<td>BASDAI (0–100)</td>
<td>62.5 (28.8–82.4)</td>
<td>11.3 (1.2–44.0)**</td>
<td>15.9 (1–61.7)**</td>
<td>–</td>
<td>26 (2.8–46.7)**</td>
<td>–</td>
<td>42.1 (2.7–91.6)*</td>
<td>11.2 (3.9–40.3)**</td>
</tr>
<tr>
<td>BASFI (0–100)</td>
<td>77.5 (9.9–94.2)</td>
<td>22.3 (1.0–63.2)**</td>
<td>36.8 (1–74.4)**</td>
<td>–</td>
<td>37.9 (4.7–73.7)**</td>
<td>–</td>
<td>45.6 (5.8–75.3)*</td>
<td>17.9 (3.9–63.9)**</td>
</tr>
<tr>
<td>Dougados functional index (0–40)</td>
<td>21 (7–31.5)</td>
<td>8.5 (0.5–21.0)**</td>
<td>13.25 (1–26)**</td>
<td>–</td>
<td>12.5 (1.5–23.5)**</td>
<td>–</td>
<td>15 (3.5–24.0) NS</td>
<td>9 (2.5–20.5)*</td>
</tr>
<tr>
<td>Spinal pain (0–3)</td>
<td>2 (0–3)</td>
<td>0 (0–2)*</td>
<td>0 (0–3)*</td>
<td>–</td>
<td>0.5 (0–3) NS</td>
<td>–</td>
<td>0 (0–3) NS</td>
<td>0 (0–3)*</td>
</tr>
<tr>
<td>Occiput to wall (cm)</td>
<td>12 (3.7–21.5)</td>
<td>7.7 (2.5–22.0)**</td>
<td>9 (3.5–21)*</td>
<td>–</td>
<td>8.5 (3.8–21)*</td>
<td>–</td>
<td>8.5 (4–20)*</td>
<td>10 (2.5–20)*</td>
</tr>
<tr>
<td>Fingers to floor (cm)</td>
<td>24 (5.5–38.0)</td>
<td>15 (0–20.3)**</td>
<td>10.5 (0–33.8)**</td>
<td>–</td>
<td>15.6 (7.2–36.5)**</td>
<td>–</td>
<td>17.5 (0–31)*</td>
<td>17.4 (0–31)*</td>
</tr>
<tr>
<td>Dougados articular index (0–30)</td>
<td>6 (1–15)</td>
<td>0 (0–4)**</td>
<td>0.5 (0–4)**</td>
<td>–</td>
<td>2 (0–11)*</td>
<td>–</td>
<td>1.5 (0–8)**</td>
<td>0 (0–4)**</td>
</tr>
</tbody>
</table>

Values are given as median (range). *p < 0.05, **p < 0.001, NS, not significant (determined by Wilcoxon signed ranks test compared with baseline).
From this one year follow up study the following conclusions can be reached. Firstly, a statistically significant decrease of global, peripheral, and axial disease manifestations was seen after one year of treatment in the 19 evaluated patients. Two patients changed to another dosing regimen owing to partial lack of efficacy of the drug. Improvements in BASMI, chest expansion, fingers to floor, and occiput to wall distance in the group of patients with AS, paralleled global improvement of the disease activity in these patients. It is unclear if this improvement in spinal metrology is an indication of an effect on the progressive axial ankylosis which is typical for AS. This study was designed to evaluate the clinical efficacy of infliximab in SpA, and not to evaluate the effect on ankylosis in AS; therefore one cannot draw conclusions from this small subgroup. In order to detect such a structural improvement, homogeneous patient groups, adequate sample size, and sensitive outcome measurements, including radiological assessments evaluated over longer periods, are mandatory.

Secondly, recurrence of symptoms, such as axial night pain, morning stiffness, or synovitis, was reported by three patients (16%) at week 20, 13 patients (68%) at week 34, and 15 patients (79%) at week 48, with the moment of recurrence between 10 and 14 weeks after re-treatment. This relapse was furthermore documented by the fact that ESR, CRP, axial morning stiffness, and axial pain assessed by the patient, were no longer statistically significant when compared with baseline, immediately before the third re-treatment, at week 48. Together with observations made in other open label studies, these results indicate that a maintenance regimen of 5 mg/kg infliximab every 14 weeks could not control the inflammatory disease activity continuously. Adjustment of the maintenance regimen seems warranted; however, it is not clear whether this should be achieved by increasing the dose or shortening the interval between doses.

Figure 1 Evolution of patient assessments over time. The box plots show the median value (horizontal line) and range (first to third quartiles in boxes) of the chosen parameter (y axis) over time (weeks). Significance (p) was calculated by the Wilcoxon signed ranks test: *$p<0.05$, **$p<0.01$, ***$p<0.001$, NS, not significant. (A) Patient global assessment (100 mm VAS); (B) C reactive protein (mg/l); (C) swollen joint count; (D) spinal pain assessment (100 mm VAS).
Thirdly, re-treatment of patients whose symptoms recurred induced an improvement comparable with the response seen after the induction scheme reported in the 12-week pilot study. All variables of disease activity were again significantly improved two weeks after every re-treatment.

Fourthly, the treatment with infliximab in this patient group was shown to be safe and the infusion procedure was generally well tolerated. Only one mild self-limiting infusion reaction was seen, and no major infectious episodes or malignancies occurred. Previous studies indicate that treatment with TNFα inhibitors, such as infliximab, can induce the development of ANA in patients with RA.23 So far no data on the occurrence of such antibodies in patients with SpA treated with infliximab have been reported: here, up to 12/21 (57%) patients developed ANA; in four of them (19%) anti-dsDNA antibodies were also detected. However, no significant laboratory changes in peripheral blood count or complement occurred in these patients; no patients developed proteinuria, nor where there any other lupus-like symptoms. The overall frequency of autoantibodies is comparable with the data reported in RA.24 However, we have to remember that the background for developing such antibodies—in RA versus SpA—is different. Occurrence of ANA in RA is not considered unusual and a prevalence up to 60% has been seen;23 in SpA and AS, however, only scarce data are available, showing a prevalence ranging from 11.4% to 19.1%.25 In these studies a bias attributed to the use of sulfasalazine is likely. A retrospective analysis of a patient group with SpA disclosed a prevalence of 8%. ANA positive patients before sulfasalazine treatment with no anti-dsDNA antibodies detected. After two to five years of sulfasalazine treatment, the incidence rose to 24% and 4%, respectively for ANA and anti-dsDNA antibodies.26

In conclusion, this one year open pilot study suggests that infliximab is a safe and effective drug in the treatment of SpA. Regardless of the fact that these data need further confirmation in ongoing double blind, placebo controlled trials, the extent of the clinical improvements, their consistency throughout the study group, the parallel changes in laboratory indices of inflammation, and the maintenance of this therapeutic effect over one year, are encouraging. Further accurate follow-up of this patient group is mandatory for the optimisation of the maintenance regimen and for the evaluation of longer term safety with regard to infections, malignancies, and the occurrence of ANA.

ACKNOWLEDGMENTS
Ellie Kruijthof and Filip Van den Bosch contributed equally to this study. The authors are indebted to Schering-Plough and Centocor (F. Cornillie) for the supply of the drug. This work was supported by a concerted action grant GOA 12051501 of the University of Ghent, Belgium.

Authors’ affiliations
E. Kruijthof, F. Van den Bosch, D. Boeten, A. Herrsans, F. De Keyser, H. Mielants, E. M. Veys, Department of Rheumatology, Ghent University Hospital, Belgium.

REFERENCES

