EXTENDED REPORT

Painful shoulder: comparison of physical examination and ultrasonographic findings

E Naredo, P Aguado, E De Miguel, J Uson, L Mayordomo, J Gijon-Baños, E Martin-Mola

Background: High frequency ultrasonography is an accurate non-invasive imaging technique for evaluating patients with painful shoulder.

Objective: To compare the clinical diagnosis established by a physical examination with high frequency ultrasonographic findings in patients with painful shoulder.

Methods: Thirty one consecutive patients with a first flare of shoulder pain were prospectively included in the study. All had a physical examination performed by two blinded rheumatologists. Ultrasonographic examination was carried out within one week of the physical examination by a third rheumatologist experienced in this technique who had no knowledge of the clinical findings. Ultrasonography was considered the optimal diagnostic technique.

Results: Clinical assessment showed low accuracy in the diagnosis of periartricular shoulder lesions.

Conclusion: Ultrasonography should be used wherever possible to improve diagnosis and treatment of painful shoulder.

Shoulder pain is one of the most common complaints encountered in rheumatological practice and often leads to considerable disability. There are many causes of a painful shoulder, but periartricular soft tissue lesions involving tendons, ligaments, and bursae are the most common and are often associated with chronic impingement of the rotator cuff on the anterolateral margin of the acromion. Although a number of clinical tests used for the diagnosis of painful shoulder are considered accurate in determining the location of the periartricular lesions, these entities may be difficult to differentiate by physical examination.

To the best of our knowledge, no studies have compared the result of physical examination (PE) with the findings of an accurate imaging technique for a broad spectrum of periartricular shoulder disorders. Given the great improvement in musculoskeletal imaging achieved by high frequency ultrasonography (US) and its present availability in rheumatological practice, it can be used to evaluate the accuracy of clinical diagnosis of painful shoulder.

The aim of this study was therefore to prospectively compare the clinical diagnosis established by PE with US findings in patients with painful shoulder.

PATIENTS AND METHODS

We studied prospectively 31 consecutive patients referred to our rheumatology unit with a first flare of shoulder pain clinically diagnosed as periartricular disorders. Patients with previous trauma or chronic inflammatory arthritis were excluded. Each patient had a PE performed independently by two blinded rheumatologists (PA and EM), who assessed the active and passive range of motion, performed 10 shoulder manoeuvres, and explored the acromioclavicular joint. Three clinical tests (Neer’s, Hawkins’s, and Yocum’s) were used to detect shoulder impingement syndrome.

Seven manoeuvres for determining the location of the tendon lesion, Jobe’s test for supraspinatus, Patte’s test for infraspinatus and teres minor, Gerber’s lift off test and resisted internal rotation assessment for subscapularis, and Vergason’s test, palm up test, and Popeye’s sign for the long head of the biceps brachii, were also performed. Clinical diagnosis was established by consensus. Within a week of the PE, a US examination was carried out by a rheumatologist experienced in this technique without knowledge of the PE findings. US was considered to be the optimal diagnostic test as surgical results were not available for most of the patients.

Physical examination

For the impingement manoeuvre of Neer, the examiner stands behind the seated patient and uses one hand to prevent rotation of the scapula while passively raising the patient’s arm with the other hand to produce both forward elevation and abduction in order to reduce the space between the greater tuberosity and the anteroinferior aspect of the acromion. In Hawkins’s test, the examiner stands facing the patient, and, after raising the patient’s arm to 90° of strict forward elevation with the elbow in 90° flexion, rotates the arm medially by lowering the forearm. For Yocum’s test, the patient is asked to place the hand on his or her other shoulder and to raise the elbow without elevating the shoulder. These tests are positive when they elicit the pain usually experienced by the patient.

For Jobe’s manoeuvre, the examiner stands facing the patient, who places both arms in 90° abduction and 30° horizontal adduction, in the plane of the scapula, with his thumbs pointing downward in order to produce medial rotation of the shoulder; the examiner then pushes the patient’s arms downward while asking the patient to resist the pressure. In Patte’s manoeuvre, the examiner supports the patient’s elbow in 90° of forward elevation in the plane of the scapula while the patient is asked to rotate the arm laterally in order to compare the strength of lateral rotation. Jobe’s and Patte’s manoeuvres can produce three types of response: (a) absence of pain, indicating that the tested tendon is normal; (b) the ability to resist despite pain, denoting tendinitis; (c) the inability to resist with gradual lowering of the arm or forearm, indicating tendon rupture.

In Gerber’s lift off test, the patient is asked to place the hand against the back at the level of the waist with the elbow

Abbreviations: US, ultrasonography; PE, physical examination.
in 90° flexion. The examiner pulls the hand to about 5–10 cm from the back while maintaining the 90° bend in the elbow. The patient is then asked to hold the position without the examiner’s help. This test is positive if the hand cannot be lifted off the back, detecting complete rupture of the subscapularis tendon.

In Yergason’s test,11 pain along the course of the biceps tendon produced by resisted supination of the forearm denotes bicipital tendinitis. For Yergason’s test, the patient is also asked to perform a combined movement of flexion at the elbow along with medial rotation of the arm while the examiner resists it. If the biceps tendon is subluxated, it will slip out of the groove and elicit the patient’s abnormal sensation. For the biceps tendon subluxation, Empty bicipital groove and identification of the displaced tendon.

Biceps tendon subluxation
Empty bicipital groove and identification of the displaced tendon

Biceps tendon degeneration
Tendon hypochoicogenicity and tendon thinning

Rotator cuff tendinitis
Tendon hypochoicogenicity or tendon thickening with or without internal hypo or hyperchoic foci

Supraspinatus and infraspinatus full thickness tear
Non-visualisation of tendon or complete fibres discontinuity

Supraspinatus and infraspinatus partial thickness tear
Partial fibre discontinuity

Supraspinatus and infraspinatus partial thickness tear
Non-visualisation of tendon or fibre discontinuity from the humeral head to the subacromial-subdeltoid bursa or superior convexity instead of concavity

Acromioclavicular degenerative changes
Cortical irregularities or osteophytes, usually accompanied by intra-articular hypochoic fluid displacing joint capsule.

Glenohumeral effusion
Distance from the posterior labrum to the posterior infraspinatus tendon greater than 2 mm

Rotator cuff full thickness tear
Non-visualisation of tendon or complete fibres discontinuity

Rotator cuff partial thickness tear
Partial fibre discontinuity

Table 1 lists the US diagnostic criteria for shoulder abnormalities which are based on those widely described in the literature.6 13 14 17–19 US findings from the clinically evaluated painful shoulders and the asymptomatic opposite shoulders were recorded.

Statistical analysis
A 2 × 2 table was used to evaluate the PE sensitivity, specificity, positive, and negative predictive value for the diagnosis of shoulder lesions.
RESULTS
There were 27 women and four men of mean age 57.5 years (range 21–77). Mean duration of symptoms was 12.5 months (range 1–48). Table 2 lists PE and US findings for the painful shoulders. Clinical diagnosis included supraspinatus, infraspinatus, and subscapularis tendinitis, tear or unspecific lesion when a more accurate diagnosis was not possible by PE, biceps tendinitis, subluxation, and rupture, subacromial-subdeltoid bursitis, acromioclavicular involvement, rotator cuff impingement, and glenohumeral effusion.

Most patients showed sonographic involvement of various different periarticular structures. Of the 34 rotator cuff tears detected by US, 29 were full thickness and five were partial thickness. All patients had an asymptomatic opposite shoulder at entry. Twenty one patients had no history of pain in the opposite shoulder, whereas 10 reported previous mild symptoms in the opposite shoulder. US examination of these asymptomatic shoulders showed a supraspinatus partial thickness tear in eight patients, acromioclavicular degenerative changes in seven patients, and mild impingement in six patients.

Table 2 Physical examination/ultrasonographic findings in patients with painful shoulder

<table>
<thead>
<tr>
<th></th>
<th>PE</th>
<th>US</th>
</tr>
</thead>
<tbody>
<tr>
<td>SS lesion</td>
<td>24</td>
<td>29</td>
</tr>
<tr>
<td>SS tendinitis</td>
<td>21</td>
<td>18</td>
</tr>
<tr>
<td>SS tear</td>
<td>3</td>
<td>6</td>
</tr>
<tr>
<td>IS lesion</td>
<td>14</td>
<td>17</td>
</tr>
<tr>
<td>IS tendinitis</td>
<td>11</td>
<td>7</td>
</tr>
<tr>
<td>IS tear</td>
<td>5</td>
<td>11</td>
</tr>
<tr>
<td>SB lesion</td>
<td>9</td>
<td>12</td>
</tr>
<tr>
<td>SB tendinitis</td>
<td>6</td>
<td>6</td>
</tr>
<tr>
<td>SB tear</td>
<td>4</td>
<td>7</td>
</tr>
<tr>
<td>Biceps tendinitis</td>
<td>19</td>
<td>19</td>
</tr>
<tr>
<td>SASD bursitis</td>
<td>8</td>
<td>14</td>
</tr>
<tr>
<td>ACCL involvement</td>
<td>15</td>
<td>24</td>
</tr>
<tr>
<td>Impingement</td>
<td>16</td>
<td>20</td>
</tr>
<tr>
<td>Biceps tendon subluxation</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>Biceps tendon rupture</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>Glenohumeral effusion</td>
<td>0</td>
<td>3</td>
</tr>
</tbody>
</table>

Values are number of patients. PE = physical examination; US = ultrasonography; SS = supraspinatus; IS = infraspinatus; SB = subscapularis; SASD = subacromial-subdeltoid; ACCL = acromioclavicular.

Table 3 Comparison of physical examination and ultrasonographic findings

<table>
<thead>
<tr>
<th></th>
<th>S (%)</th>
<th>Sp (%)</th>
<th>PPV (%)</th>
<th>NPV (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>SS lesion</td>
<td>79.3</td>
<td>50</td>
<td>95.8</td>
<td>14.2</td>
</tr>
<tr>
<td>SS tendinitis</td>
<td>72.2</td>
<td>38.4</td>
<td>61.9</td>
<td>50</td>
</tr>
<tr>
<td>SS tear</td>
<td>18.7</td>
<td>100</td>
<td>100</td>
<td>53.5</td>
</tr>
<tr>
<td>IS lesion</td>
<td>70.5</td>
<td>90</td>
<td>85.7</td>
<td>70.5</td>
</tr>
<tr>
<td>IS tendinitis</td>
<td>57.1</td>
<td>70.8</td>
<td>36.3</td>
<td>85</td>
</tr>
<tr>
<td>IS tear</td>
<td>36.3</td>
<td>95</td>
<td>80</td>
<td>73</td>
</tr>
<tr>
<td>SB lesion</td>
<td>50</td>
<td>84.2</td>
<td>66.6</td>
<td>72.7</td>
</tr>
<tr>
<td>SB tendinitis</td>
<td>50</td>
<td>88</td>
<td>50</td>
<td>88</td>
</tr>
<tr>
<td>SB tear</td>
<td>50</td>
<td>95.4</td>
<td>75</td>
<td>87.5</td>
</tr>
<tr>
<td>Biceps tendinitis</td>
<td>73.6</td>
<td>58.3</td>
<td>73.6</td>
<td>58.3</td>
</tr>
<tr>
<td>SASD bursitis</td>
<td>42.8</td>
<td>88.2</td>
<td>75</td>
<td>65.2</td>
</tr>
<tr>
<td>ACCL involvement</td>
<td>58.3</td>
<td>85.7</td>
<td>93.3</td>
<td>37.5</td>
</tr>
<tr>
<td>Impingement</td>
<td>65</td>
<td>72.7</td>
<td>81.2</td>
<td>53.3</td>
</tr>
</tbody>
</table>

SS = supraspinatus; IS = infraspinatus; SB = subscapularis; SASD = subacromial-subdeltoid; ACCL = acromioclavicular; S = sensitivity; Sp = specificity; PPV = positive predictive value; NPV = negative predictive value.

DISCUSSION
Painful shoulder is a very common rheumatological condition. In most patients, it results from periarticular lesions involving the rotator cuff, the biceps tendon, and the subacromial-subdeltoid bursa. The differential diagnosis includes several entities of similar clinical picture. Tendinitis and tears of the rotator cuff, biceps tendinitis, and subacromial-subdeltoid bursitis are the most common lesions found. It has been
established that tendon degeneration occurs as part of the aging process. Progressive tendon failure then leads to rotator cuff rupture. Consequently, tendinitis and tears of the rotator cuff usually occur in patients over 50 years of age. The cause of these lesions is thought to be tendon degeneration, repetitive trauma, or both. The impingement concept is a unification of this spectrum of disorders. In 1972, Neer proposed his concept of impingement of the rotator cuff on the anterolateral margin of the acromion as a three stage classification of tendon pathology ranging from the stage I rotator cuff tendinitis seen in the young adult to the stage III condition of tendon rupture. Neer also proposed his concept of impingement of the rotator cuff on the anterolateral margin of the acromion as a three stage classification of tendon pathology ranging from the stage I rotator cuff tendinitis seen in the young adult to the stage III condition of tendon rupture seen in older patients. Subacromial-subdeltoid bursitis, biceps tendinitis (occasionally associated with biceps subluxation), and acromioclavicular degenerative changes often accompany rotator cuff lesions and impingement syndrome.

Biceps tendon involvement has been reported to be present in about 85% of patients with a painful rotator cuff tear. Moreover, increased fluid in subacromial-subdeltoid bursa usually accompanies impingement syndrome or rotator cuff full thickness tears. The explanation for these findings is that the biceps tendon and the subacromial-subdeltoid bursa are exposed to the mechanical forces that contribute to cuff impingement because of its anterior location in the impingement area. Furthermore, the synovial sheath of the biceps tendon is an extension of the glenohumeral synovial membrane and the subacromial-subdeltoid bursa communicates with the glenohumeral joint after rotator cuff full thickness tears.

The clinical diagnosis of periarticular shoulder conditions depends on a number of physical manoeuvres designed to increase the encroachment of the acromial arch on to the rotator cuff or to determine the location of tendon lesions by testing the motion against resistance. Clinically it may be difficult to differentiate the pain patterns of the rotator cuff lesions, biceps tendon pathology, and subacromial-subdeltoid bursitis. Chronically, any position in which the rotator cuff is compressed by the acromial arch causing pain during examination is highly diagnostic of rotator cuff lesion. However, this finding could be indicative of any rotator cuff condition, such as tendinitis, partial thickness tear, or full thickness tear. Moreover, many of these positions also compress or stretch the biceps tendon and the subacromial-subdeltoid bursa. Therefore the induced pain is not diagnostic of one rather than another disorder.

Our results show that the clinical diagnosis of periarticular conditions in the painful shoulder is not very accurate compared with US diagnosis. Other authors have also reported the low accuracy of clinical assessment compared with intraoperative anatomic lesions in the diagnosis of periarticular shoulder conditions. In contrast with our results, Leroux et al reported satisfactory sensitivity but poor specificity for clinical tests, particularly for determining the location and type of rotator cuff lesions; the probable explanation is the difference in populations. Norwood et al tried to define the clinical signs and symptoms that indicate the presence of a rotator cuff tear and predict its severity. They found that the characteristics of the pain and the site of tenderness were not helpful, nor was weakness to resisted abduction. Our and other results are to be expected because most patients with chronic shoulder pain have implantation syndrome and several periarticular lesions, usually involving different tendons and the subacromial-subdeltoid bursa.

A possible explanation for the low accuracy of the clinical assessment in our series could be an absence of correlation between clinical findings and anatomical abnormalities in the shoulder. A variable prevalence of periarticular shoulder lesions, especially rotator cuff tears, has been reported in asymptomatic shoulders. However, among 31 patients, we found supraspinatus partial thickness tears in eight, cortical irregularities or osteophytes in the acromioclavicular joint in seven, and mild US signs of supraspinatus impingement in six asymptomatic shoulders. No asymptomatic shoulder showed rotator cuff full thickness tears, subacromial or infraspinatus tears, rotator cuff tendinitis, biceps tendon lesions, or subacromial-subdeltoid bursitis. Therefore the presence of asymptomatic US abnormalities in the painful shoulders may partially explain the low sensitivity of the clinical evaluation of rotator cuff lesions, but does not explain the low specificity of PE in their detection nor the low accuracy of PE in diagnosing all shoulder lesions.

High resolution imaging afforded by the current generation of high frequency (greater than 7.5 MHz) linear transducers allows us to effectively assess superficial tendon and muscle lesions and bursitis. This technique has also been shown to be accurate for detecting intra-articular fluid and synovitis and abnormalities of articular cartilage. Furthermore, US can be used as a guide in performing periarticular and intra-articular fluid aspirations, infiltrations, and biopsies; making these procedures more accurate than when carried out blind. US has considerable advantages over other imaging techniques: it can routinely be used for dynamic examination of the musculoskeletal system; it is quick and easy to perform; it has no secondary effects; the costs are low. It has proved to be accurate and reliable in diagnosing a wide range of shoulder disorders compared with arthrography, MRI, arthroscopy, and surgical findings.

Several studies have shown an accuracy for US detection of rotator cuff lesions compared with surgical findings of greater than 0.85 and an interobserver reliability of 0.63. Disadvantages of US include lack of visualisation of the posterior aspect of the supraspinatus and infraspinatus tendons and a limited view of the glenohumeral joint and the glenoid labrum. However, most rotator cuff lesions involve the “critical zone” in the anterior aspect of the tendons. Furthermore, US is considered to be the most operator dependent imaging technique. However, the results of any imaging technique depend on the skill of the examiner.

Initial conservative treatments of periarticular shoulder disorders are quite similar relying on the use of non-steroidal anti-inflammatory drugs, physiotherapy, and local injections of corticosteroids. The overall prognosis for patients with these conditions is considered to be good. However, previous studies of the effectiveness of conservative therapeutic approaches have relied largely on clinical assessment. Patient groups have been rather heterogeneous and not matched, making interpretation of results difficult. In addition, few studies have evaluated the outcome of the different periarticular lesions diagnosed by an accurate imaging technique. It would therefore be desirable to obtain an exact diagnosis of the different periarticular shoulder lesions in order to evaluate their prognosis and their response to various conservative treatment options. The availability of US in rheumatological practice offers the possibility of establishing a more accurate diagnosis of the painful shoulder and therefore improving the treatment of this common disorder.

ACKNOWLEDGMENT
We are indebted to Dr Angel Chamorro from Siemens Corporation for his technical support.
REFERENCES