MATTERS ARISING

Coffee or decaff?
This potentially valuable information about a relation between coffee consumption and the presence of rheumatoid factor is difficult to evaluate because of a lack of clarity in definitions. What is meant by “coffee”? Is coffee, caffeinated or decaffeinated? This is an obvious distinction that readers need when considering these findings. It would have been interesting, also, to have had information about other beverage consumption, such as colas or teas, or both. This might or might not have affected or clarified the results, which, currently, have no theoretical underpinnings. However, the information is an exciting start towards understanding factors that contribute to this disabling and prevalent illness.
S E GROBER
Cancer Care
grober@cancercare.org

Authors’ reply
The surveys were conducted in 1970s. At that time most Finns drank traditional boiled coffee. The use of decaffeinated coffee was exceptional. In the Mini-Finland Health Survey, there was a negative correlation between daily cups of tea and coffee (age and sex adjusted partial r=0.30, p<0.001). However, tea consumption showed no association with the presence of rheumatoid factor (age and sex adjusted odds ratio per one cup of tea = 0.91, 95% confidence interval 0.73 to 1.13) and did not confound the results we reported. Unfortunately, we had no information on the consumption of colas, but according to indirect information on sales of cola beverages the contribution of caffeine from this source was minimal in Finns at that time.
M HELIOVAARA
K AHO
P KNEKT
A REUNANEN
A AROMAA
National Public Health Institute,
Helsinki, Finland
O IMPIVAARA
Social Insurance Institution,
Research and Development Centre,
Turku, Finland

Correspondence to: Dr Markku Heliövaara, National Public Health Institute, Mannerheimintie 166, FIN-00380 Helsinki, Finland
markku.heliovaara@ktl.fi

LETTER TO THE EDITOR

Stress fracture of the sacrum in a child
Low back pain in children can be a diagnostic dilemma. Stress fractures affecting the sacrum should be considered in the differential diagnosis of low back pain in children. We report a rare case of sacral stress fracture in a 10 year old that healed with rest, and discuss the pertinent clinical and radiological findings. The diagnosis is often delayed because plain radiographic findings are typically normal and it is best made with skeletal scintigraphy. Computed tomography (CT) or magnetic resonance imaging (MRI) is indicated if there is concern over malignancy or intraspinal pathology.

CASE REPORT
A healthy 10 year old child presented with a two-week history of insidious onset and worsening of his mechanical low back and right sided buttock pains. He gave no specific history of trauma but actively participated in school physical education. He described constant pain that worsened with activity and improved with bed rest. He remained doubly...
continent and there were no associated lumbar radiculopathy or systemic symptoms.

Physical examination disclosed restricted lumbar spine flexion and extension, and diffuse tenderness in the right buttock over the sacroiliac joint. Right straight leg raise was restricted to 70 degrees, but no nerve root tension signs were present. He was neurologically intact and there was no leg length discrepancy.

Full haematological, biochemical, bone, immunological, and inflammatory profiles, including autoantibody screen, were entirely normal. Plain radiography of the lumbosacral spine and pelvis showed no evidence of a soft tissue mass, lumbar disc, or vertebral pathology. However, T1. and T2. weighted images showed respective areas of low and high signal changes in the medullary region of the right sacral ala (fig 1). MRI of the lumbar spine, sacrum, and pelvis showed no evidence of a soft tissue mass, lumbar disc, or vertebral pathology. However, T1. and T2. weighted images showed respective areas of low and high signal changes in the medullary region of the right sacral wing surrounding a central linear very low signal void (figs 2A and B). CT scans showed a band-like medullary sclerosis in the region of the right sacral ala (fig 1). MRI of the lumbar spine, sacrum, and pelvis showed no evidence of a soft tissue mass, lumbar disc, or vertebral pathology. However, T1. and T2. weighted images showed respective areas of low and high signal changes in the medullary region of the right sacral ala (fig 1). MRI of the lumbar spine, sacrum, and pelvis showed no evidence of a soft tissue mass, lumbar disc, or vertebral pathology. However, T1. and T2. weighted images showed respective areas of low and high signal changes in the medullary region of the right sacral ala (fig 1). MRI of the lumbar spine, sacrum, and pelvis showed no evidence of a soft tissue mass, lumbar disc, or vertebral pathology. However, T1. and T2. weighted images showed respective areas of low and high signal changes in the medullary region of the right sacral ala (fig 1). MRI of the lumbar spine, sacrum, and pelvis showed no evidence of a soft tissue mass, lumbar disc, or vertebral pathology. However, T1. and T2. weighted images showed respective areas of low and high signal changes in the medullary region of the right sacral ala (fig 1). MRI of the lumbar spine, sacrum, and pelvis showed no evidence of a soft tissue mass, lumbar disc, or vertebral pathology. However, T1. and T2. weighted images showed respective areas of low and high signal changes in the medullary region of the right sacral ala (fig 1). MRI of the lumbar spine, sacrum, and pelvis showed no evidence of a soft tissue mass, lumbar disc, or vertebral pathology. However, T1. and T2. weighted images showed respective areas of low and high signal changes in the medullary region of the right sacral ala (fig 1). MRI of the lumbar spine, sacrum, and pelvis showed no evidence of a soft tissue mass, lumbar disc, or vertebral pathology. However, T1. and T2. weighted images showed respective areas of low and high signal changes in the medullary region of the right sacral ala (fig 1). MRI of the lumbar spine, sacrum, and pelvis showed no evidence of a soft tissue mass, lumbar disc, or vertebral pathology. However, T1. and T2. weighted images showed respective areas of low and high signal changes in the medullary region of the right sacral ala (fig 1). MRI of the lumbar spine, sacrum, and pelvis showed no evidence of a soft tissue mass, lumbar disc, or vertebral pathology. However, T1. and T2. weighted images showed respective areas of low and high signal changes in the medullary region of the right sacral ala (fig 1). MRI of the lumbar spine, sacrum, and pelvis showed no evidence of a soft tissue mass, lumbar disc, or vertebral pathology. However, T1. and T2. weighted images showed respective areas of low and high signal changes in the medullary region of the right sacral ala (fig 1). MRI of the lumbar spine, sacrum, and pelvis showed no evidence of a soft tissue mass, lumbar disc, or vertebral pathology. However, T1. and T2. weighted images showed respective areas of low and high signal changes in the medullary region of the right sacral ala (fig 1). MRI of the lumbar spine, sacrum, and pelvis showed no evidence of a soft tissue mass, lumbar disc, or vertebral pathology. However, T1. and T2. weighted images showed respective areas of low and high signal changes in the medullary region of the right sacral ala (fig 1). MRI of the lumbar spine, sacrum, and pelvis showed no evidence of a soft tissue mass, lumbar disc, or vertebral pathology. However, T1. and T2. weighted images showed respective areas of low and high signal changes in the medullary region of the right sacral ala (fig 1). MRI of the lumbar spine, sacrum, and pelvis showed no evidence of a soft tissue mass, lumbar disc, or vertebral pathology. However, T1. and T2. weighted images showed respective areas of low and high signal changes in the medullary region of the right sacral ala (fig 1).

Figure 3 Axial computed tomography scan showing a band-like medullary sclerosis in the right sacral ala that extends into the S1 sacral foramen.