MATTERS ARISING

Incidence of RA in people with persistently raised RF

A criticism of the study reported in the Annals is that age was not taken into account in the evaluation of the probability of development of rheumatoid arthritis (RA) among symptom free subjects with persistently raised rheumatoid factor (RF). The prevalence of RF can be as high as 14.1% in apparently healthy people aged 67–95 (mean age 81).RF is also 3.5 times more common in healthy elderly subjects (aged >65) than in their younger counterparts. All these factors may alter the natural history of arthritis in elderly patients who have RF either in good health or in a non-arthritic presentation of RA.

The latter is exemplified by a patient admitted at the age of 76 with symptomatic, as well as echocardiographically validated rheumatoid pericarditis in the absence of arthritis. Rheumatoid arthritis latent fixation test (RA LFT) was positive with a titre of 1/160, antinuclear factor (ANF) titre was 1/250, and signs of active inflammatory disease included a platelet count of 750 × 10⁹/l, and an erythrocyte sedimentation rate (ESR) of 98 mm/1st h (Westergren). Arthralgia of the hands and cyte sedimentation rate (ESR) of 18 mm/1st h. She was admitted at the age of 76 with symptomatic, as well as echocardiographically validated rheumatoid pericarditis in the absence of arthritis. Rheumatoid arthritis latent fixation test (RA LFT) was positive with a titre of 1/160, antinuclear factor (ANF) titre was 1/250, and signs of active inflammatory disease included a platelet count of 750 × 10⁹/l, and an erythrocyte sedimentation rate (ESR) of 98 mm/1st h (Westergren). Arthralgia of the hands and cyte sedimentation rate (ESR) of 18 mm/1st h.

However, increased incidence of raised RF in elderly people is not relevant to the findings that we published recently in the Annals. We simply observed increased prevalence and incidence of rheumatoid arthritis (RA) in elderly subjects who had one or more RF isotypes persistently raised, usually IgM and IgA, compared with those with a transient increase in RF or persistent increase in only one RF isotype. There was no significant age difference between these two groups of subjects studied.

Dr Jolobe’s case history simply confirms what has already been often reported previously that an increase of RF often precedes clinical manifestation of RA. It would have been interesting to know about the RF isotype pattern of his patient. We have noted that the pulmonary manifestation of RA is strongly associated with raised IgA RF.

HELGÍ VALDMARSSON
Department of Immunology, National University Hospital, Landhópitalinn, 101 Reykjavik, Iceland

Author’s reply

It is certainly well documented that the incidence of rheumatoid factor (RF) increases with age. However, we are not aware of any study of different RF isotypes in this context, but our own unpublished observation indicates that it is mainly IgM RF that tends to increase in symptom free elderly people.

However, increased incidence of raised RF in elderly people is not relevant to the findings that we published recently in the Annals. We simply observed increased prevalence and incidence of rheumatoid arthritis (RA) in elderly subjects who had one or more RF isotypes persistently raised, usually IgM and IgA, compared with those with a transient increase in RF or persistent increase in only one RF isotype. There was no significant age difference between these two groups of subjects studied.

COMMENT
This case shows a remarkable dissociation between arthritic symptoms and levels of RF, perhaps signifying that when the immune status is altered in old age, the relation between RF and the natural history of RA might be less clear than it is in younger people.

O M P JOLOBÉ
Department of Medicine for the Elderly, Tameside General Hospital, Fountain Street, Ashton under Lyne OL6 9RW, UK

The HLA-B*2709 subtype in a patient with undifferentiated spondarthritides

In 1998, in this journal, we reported the cases of two B27 positive patients with undifferentiated spondyloarthropathy (SpA) and showed dactylitis also affecting the synovial sheaths in the palm of the hand.1 Neither patient had axial disease but showed peripheral manifestations of spondyloarthropathy (SpA), such as peripheral arthritis, peripheral enthesitis, and dactylitis.

Recently, one of our two patients (No 2) was subtyped and found to be B*2709 positive. As far as we know this subtype has never been found in patients with SpA.

DNA typing of HLA class I alleles was performed using a DNA sample prepared from peripheral blood lymphocytes by the salting out procedure. The class 1 ABC SSP UNITRAY low resolution kit (Pel-Freeze) was used. The primer sets amplify all alleles described by the International Nomenclature Committee of WHO in 1995 and in 1997. Polymerase chain reaction amplification with sequence-specific primers (PCR-SSP) was used. A control primer pair was present to verify the integrity of the PCR reaction. Modular typing of B*2709 was performed by a PCR-SSP technique with a DYNA-L RA-B27 kit (DYNAAL AS, Oslo, Norway), which identifies all the phenotypically different HLA-B27 alleles, B*2701-11, recognised by the HLA Nomenclature Committee in 1973. The typing results for our patients were: HLA-A*0101-02, *3201-02; HLA-B*0801, *2709; HLA-C*0102-03, *0701-07.

To confirm these results HLA-B locus sequence based typing was performed. A unique DNA amplification, encompassing exon 1 to intron 3, and four fluorescent sequencing reactions, covering exon 2 and 3, were used. Two intronic amplifications generated a 1 kb length product useful for direct sequencing. For complete subtyping of the allelic variants PCR-SSP was used. Cycle sequencing reactions allowed the incorporation of fluorescently labelled dideoxynucleotides for detection on a DNA automated sequencer (ABI PRISM 377, Perkin Elmer). Data processing and allele assignment were performed automatically with specific analysing software that compares the sequenced results against a sequence library and provides individual allele assignment for each sequence. The HLA-B class 1 high resolution typing of our sample was HLA-B*0801:2709 in agreement with the low resolution typing performed by PCR-SSP.

SpA has a strong association with the HLA-B27 molecule. Studies in humans and transgenic rodents suggest a direct involvement of HLA-B27 in the pathogenesis of the disease. Thirteen subtypes of HLA-B27 (B*01-13) have been described, differing from each other by one or more amino acid changes, mainly in the peptide binding site. Of these B*2701, 02, 03, 04, 05, 07, 08, 10 are associated with ankylosing spondylitis (AS). B*2711–13 are rare, which has previously been commented by the HLA Nomenclature Committee of WHO in 1995 and in 1997. None of the patients with SpA have been reported in China. It has been suggested that the B*2706 might protect against SpA. Recently, a study on families in which both B*2708 and B*2706 occurred has suggested that B*2706, although not associated with SpA, does not protect against SpA.

B*2709 has been found in Sardinia and in continental Italy, where the frequency of HLA-B27 in the general population is around 2%. B*2709 accounts for 25% of HLA-B27 subtypes in Sardinia and 3% in continental Italy. D’Amato and coworkers have tested 35 Sardinian patients with AS and 40 Sardinian B27 positive healthy subjects by genomic typing. None of the patients with AS were found to be B*2709 positive, in contrast with 25% among the healthy controls. The authors suggested that B*2709 is not

LETTERS TO THE EDITOR


3 Lóðvarsson BR, Jónsson T, Eiríksson K, Sigußon N. Rheumatoid factor isotypes persistently raised, usually IgM and IgA, compared with those with a transient increase in RF or persistent increase in only one RF isotype. There was no significant age difference between these three groups of subjects studied.

www.annrheumdis.com


© 2000 BMJ Group

Ann Rheum Dis: first published as 10.1136/ard.59.8.654 on 1 August 2000. Downloaded from

on March 26, 2022 by guest. Protected by copyright.
associated with AS. B*2709 differs from B*2705 by a single substitution (His→Asp) at position 116, which is located in the F pocket of the peptide-binding site. In the opinion of D’Amato and his colleagues the substitution at position 116 might exclude the acceptance of arthrogenic peptide from the B*2709.

Our patient was born in the south of Italy, she is B27 positive, and has uSpA with an erosive and disabling peripheral arthritis. Our case, also, suggests that the B*2709 might be associated with SpA and that the negative association found in Sardinian patients with AS should be confirmed in other studies.

These should include the full spectrum of SpA and not be limited to AS.

Table 1 Patients’ characteristics

<table>
<thead>
<tr>
<th>SSc</th>
<th>SLE</th>
<th>SS†</th>
</tr>
</thead>
<tbody>
<tr>
<td>Patients (n)</td>
<td>20</td>
<td>21</td>
</tr>
<tr>
<td>Age (years, mean (range))</td>
<td>56.1 (44–74)</td>
<td>50.2 (34–82)</td>
</tr>
<tr>
<td>Duration of illness (years, mean (range))</td>
<td>10.2 (1–26)</td>
<td>11.9 (1–24)</td>
</tr>
</tbody>
</table>

DY1Z positive (No (%)) 107 (50) 00 (0) 6 (33) 8 (20)

*DYZ1 = primary biliary cirrhosis.

Authors et al have previously reported that those allo-cells were T lymphocytes and infiltrated lesion skin. These findings support the hypothesis that fetal microchimerism may contribute to the pathogenesis of SSc. However, this is still controversial because Murata et al have recently reported that there is no significant difference in the presence of fetal DNA in peripheral blood between Japanese patients with SSc and healthy women with non-quantitative assay.1 Here we report further studies of fetal microchimerism in SSc, SLE, and SS.

We assayed for a specific Y chromosome sequence in the DNA extracted from peripheral blood by a nested polymerase chain reaction (PCR) in 20 patients with SSc, 21 patients with SLE, 18 patients with SS, and 41 healthy volunteers. All patients and healthy volunteers were Asian-Japanese women who had delivered at least one son. The nested PCR was done using the primers Y1–1, Y1–2, Y1–3, and Y1–4, which are specific for a part of the Y chromosome sequence, DYZ1, as described previously.4 The identity of the detected PCR product was confirmed by nucleotide sequencing. The results from healthy volunteers and test groups were compared by Fisher’s exact probability test.

Y chromosome-specific DNA was detected in 10 of the 20 patients with SSc (50%), eight of 41 healthy volunteers (20%, P=0.017), and six of 18 patients with SS (33%). No Y chromosome-specific DNA was detected in any of the patients with SLE (table 1). The DYZ1 was most commonly found in Barnett’s type III (four of five). The DYZ1 positive patients with SSc also had a variety of antibodies including anti-RNP, antimitochondrial, and anti-smooth muscle antibodies that may reflect polyclonal activation of immune cells. Anticentromere antibodies were detected more commonly in the DYZ1 negative group (eight of 10). All three patients with SS who had PBC were DYZ1 positive and had anticentromere antibodies (table 2).

Our data confirm that male DNA is found more commonly in women with SSc than in normal women. Interestingly, DYZ1 was not detected in patients with SLE and there was no significant difference between patients with SS and healthy volunteers. These data suggest that fetal microchimerism may be a phenomenon which is strongly associated with the pathogenicity of SSc and not with the related autoimmune diseases, SLE and SS.

Table 2 Comparison of clinical findings of DYZ1 positive and negative systemic sclerosis groups

<table>
<thead>
<tr>
<th>DY1Z</th>
<th>Positive (n=10)</th>
<th>Negative (n=20)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Barnett’s type,</td>
<td>I</td>
<td>3</td>
</tr>
<tr>
<td>II</td>
<td>5</td>
<td>3</td>
</tr>
<tr>
<td>III</td>
<td>4</td>
<td>1</td>
</tr>
<tr>
<td>Autoantibodies</td>
<td>Antinuclear factor</td>
<td>10</td>
</tr>
<tr>
<td>Tophosomerase I</td>
<td>4</td>
<td>1</td>
</tr>
<tr>
<td>Centromere (PBC*)</td>
<td>3</td>
<td>0</td>
</tr>
<tr>
<td>RNP</td>
<td>3</td>
<td>0</td>
</tr>
<tr>
<td>SS-A(Re)</td>
<td>2</td>
<td>3</td>
</tr>
<tr>
<td>SS-B(Le)</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>RA</td>
<td>3</td>
<td>1</td>
</tr>
<tr>
<td>ssDNA</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>Mitochondria</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>Smooth muscle</td>
<td>1</td>
<td>0</td>
</tr>
</tbody>
</table>

*PBC = primary biliary cirrhosis.


4. Cotton AL, Rasmussen FP, Pedersen-Bjergaard J, Boye E, Dam M, et al. Y chromosome-specific DNA was detected among controls was 0.38 cells/16 ml whole blood and 11.1 among patients with SSc. In addition, Artlett et al have shown Y chromosome-specific sequences in the DNA extracted from peripheral blood in 32 of 69 women with SSc (46%) as compared with 1 of 25 normal women.5 They also reported that those allo-cells were T lymphocytes and infiltrated lesion skin. These findings support the hypothesis that fetal microchimerism may contribute to the pathogenesis of SSc. However, this is still controversial because Murata et al have recently reported that there is no significant difference in the presence of fetal DNA in peripheral blood between Japanese patients with SSc and healthy women with non-quantitative assay.1 Here we report further studies of fetal microchimerism in SSc, SLE, and SS.

We assayed for a specific Y chromosome sequence in the DNA extracted from peripheral blood by a nested polymerase chain reaction (PCR) in 20 patients with SSc, 21 patients with SLE, 18 patients with SS, and 41 healthy volunteers. All patients and healthy volunteers were Asian-Japanese women who had delivered at least one son. The nested PCR was done using the primers Y1–1, Y1–2, Y1–3, and Y1–4, which are specific for a part of the Y chromosome sequence, DYZ1, as described previously.4 The identity of the detected PCR product was confirmed by nucleotide sequencing. The results from healthy volunteers and test groups were compared by Fisher’s exact probability test.
Marker of erosive progression in RA

Urokinase plasminogen activator (uPA) catalyzes the degradation of the proteolytic enzyme plasmin, which plays a part in tissue degradation and remodeling, and seems to have an important role in the erosive growth of pannus in rheumatoid arthritis (RA). The activity of uPA is localized and intensified by a cell bound receptor (uPAR), expressed by some malignant cells and some inflammatory cell types, including activated synoviocytes in some malignant cells and some inflammatory cell bound receptor (uPAR), forming a free soluble surface bound anchor, forming a free soluble proteolytic degradation and remodelling, enzyme plasmin, which plays a part in tissue talyses the formation of the proteolytic action of uPA is localised and intensified by a marker of erosive activity in the synovial joint space in RA.

The study group comprised 11 women and five men with a median age of 53.5 years (range 25–80) and a median disease duration of 57 months (range 5–360). Fifteen patients were rheumatoid factor positive and 10 had bony erosions on pre-study radiographs. Antirheumatic treatment included methotrexate (11 patients), hydroxychloroquine (two), sulfasalazine (one), and low dose steroids (eight). Clinical evaluation and measurement of suPAR, erythrocyte sedimentation rate (ESR), and C reactive protein (CRP) were done a median number of three times, and the time interval between radiographs was a median of 22 months.

Table 1 shows the results of the study. We found significantly higher suPAR concentrations (p=0.05) in plasma from those patients with RA whose x ray findings showed disease progression than in the patients who had no radiographic signs of progression, but the differences in ESR, CRP, and clinical variables were not significantly different.

This study was a pilot study in a clinical setting and conclusions must be drawn cautiously. The main problems, apart from the small number of patients, are, firstly, that in some of the patients pre-study radiographs were one to two years old. However, this would tend to diminish the differences found between the erosive progressive and non-erosive progressive groups as patients in remission, or with low activity in the study period, could be classified as progressive due to previous activity. Secondly, another possible bias, tending to increase the difference in suPAR between the two groups in this study, is that patients with high clinical activity would probably have had more extensive x ray examinations, increasing the chance of finding new erosions. We did not, however, find a difference in the number of radiographically investigated joints between our two groups of patients.

In conclusion, we find that this study indicates that plasma suPAR may be an easily accessible plasma marker of erosive progression in RA, and further studies on the subject are warranted.

OLE SLOT
Departments of Rheumatology, Copenhagen County Hospital Gentofte and Naestved Central Hospital, Denmark

NILS BRÜNNER
ROSS W STEPHENS
The Finsen Laboratory, Copenhagen University Hospital Rigshospitalet, Denmark

Correspondence to: Dr Ole Slot, Department of Rheumatology, Naestved Central Hospital, DK-4700 Naestved, Denmark