Successful conservative treatment of rheumatoid subaxial subluxation resulting in improvement of myelopathy, reduction of subluxation, and stabilisation of the cervical spine. A report of two cases

Johanna C M Oostveen, Martin A F J van de Laar, Jan A G Geelen, Ron de Graaff

Abstract
Objective—To report the efficacy of conservative treatment with cervicothoracic traction and immobilisation with a Halo vest, in two consecutive rheumatoid arthritis patients with progressive cervical myelopathy caused by subaxial subluxation.

Methods—Description of neurological symptoms and signs and findings in plain radiography (PR) and magnetic resonance imaging (MRI) of the cervical spine before and after treatment of the subaxial subluxation by traction and immobilisation with a Halo vest during four months.

Results—During four months of traction and immobilisation neurological examination showed a considerable improvement of the signs and symptoms of cervical myelopathy. Afterwards PR and MRI of the cervical spine showed reduction of the subaxial subluxation. Eventually, firm stabilisation was obtained in both patients without surgery of the cervical spine.

Conclusion—Cervical traction and immobilisation with a Halo vest can be considered as an independent conservative treatment in rheumatoid arthritis patients with cervical myelopathy caused by subaxial subluxation.

Case reports
CASE ONE
A 69 year old patient was admitted with weakness of the arms and legs, “jumping” of the legs, and urinary incontinence. Her medical history mentioned severe destructive RA of 37 years duration, total knee replacement, one transient ischaemic episode, and mild chronic bronchitis. Over the years, she had been treated with several disease modifying drugs. One year before admission she developed weakness and paresthesia of the left arm without abnormal neurological signs. Plain radiography (PR) and magnetic resonance imaging (MRI) of the cervical spine showed mild anterior and vertical subluxation of the odontoid process, SAS at C4–C5 level (9 mm) and secondary spondylosis. The spinal subarachnoid space was narrowed, but there was no spinal cord compression. She continued to wear a soft cervical collar.

At admission examination showed urinary incontinence, flexor spasms of the legs, quadriparesis (Medical Research Council (MRC) grade 3), loss of sensation to vibration and touch in arms and legs, and bilateral positive Babinsky’s sign. PR and MRI showed SAS at C4–C5 level (9 mm), secondary spondylosis, narrowing of the spinal subarachnoid space and compression of the spinal cord (fig 1A and 1B). A diagnosis of rapidly progressive myelopathy caused by SAS at C4–C5 level was made. The patient was treated with cervical traction using a Halo vest to reduce the SAS and the neurological deficit. Afterwards surgical stabilisation would be performed. During the first weeks of traction the muscle strength of arms and legs improved (MRC grade 4), and the flexor spasms and urinary incontinence disappeared. PR of the cervical spine showed reduction of the SAS. She tolerated the Halo vest treatment well. Four months after admission surgery was undertaken. Postoperative cervical traction was continued to stabilise the cervical spine. Preoperative cervical traction is an effective method to reduce subluxation. We describe two RA patients and myelopathy caused by SAS, in whom sustained improvement of the neurological signs and cervical stabilisation were achieved by temporary traction and external fixation of the cervical spine with a Halo vest.
not yet seen. Sixteen months after treatment she died of cardiac failure.

CASE TWO

A 66 year old patient with severe destructive polyarticular juvenile RA was admitted with weakness of the arms and legs, paresthesia of the arms, and numbness of the legs. Over the years, she had been treated with several disease modifying drugs and had undergone total joint replacement of both hips and one knee. Four years before admission she experienced transient neck pain and paresthesia of the arms without neurological signs of cervical myelopathy. PR showed SAS at C3–C4 level (4.5 mm) and C4–C5 level (10 mm), and discopathy at C4–C5 level. A few weeks before admission she developed increasing weakness of the arms and legs.

Figure 1 Lateral plain radiograph in flexion (A) and T2 weighted sagittal MR image (B) of the cervical spine showing C4–C5 subluxation of 9 mm with secondary spondylosis, discopathy, narrowing of the spinal subarachnoid space, and compression of the spinal cord.

Figure 2 Lateral plain radiography (A) and T2 weighted sagittal MR image (B) of the cervical spine after four months Halo vest traction and immobilisation showing reduction of C4–C5 subluxation, narrowing of the spinal subarachnoid space, and compression of the spinal cord.
legs, paresthesia of the arms, and numbness of the arms and legs. At admission she was not able to walk. Examination showed quadriparesis (MRC grade 3), loss of sensation to vibration and light touch in the arms and legs, and hyper-reflexia. PR and MRI of the cervical spine showed C3–C4 subluxation of 9 mm, stable C4–C5 subluxation of 8 mm with fusion of the vertebral bodies of C4 and C5, narrowing of the spinal subarachnoid space, and compression of the spinal cord. PR and MRI demonstrated stable C3–C4 subluxation (3 mm) and reduction of compression of the spinal cord (fig 4A and 4B). The MR image suggests presence of some extradural soft tissue at C3–C4 level. A diagnosis of rapidly progressive myelopathy resulting from C3–C4 subluxation was made. The C4–C5 subluxation was stable and not increased during the past four years. She was treated with cervical traction and immobilisation using a Halo vest to reduce the neurological deficit and the C3–C4 subluxation. During the first weeks of traction the muscle strength of arms and legs improved (MRC grade 4) and the numbness in arms and legs disappeared. PR showed reduction of C3–C4 subluxation (3 mm). Four months after admission the Halo vest was removed. PR and MRI demonstrated stable C3–C4 subluxation (3 mm) and reduction of compression of the spinal cord (fig 4A and 4B). As expected there were no changes at C4–C5 level. Surgical stabilisation was not done because the patient preferred conservative treatment. One year after this treatment the patient had no numbness of arms and legs and was able to walk. PR of the cervical spine showed stable C3–C4 subluxation (3 mm).

Discussion
We described two cases of successful conservative treatment of severe myelopathy resulting from rheumatoid SAS. In the past five years we have not seen other RA patients with severe myelopathy caused by SAS in our department (1997:1900 RA patients).

Conservative management of AAS and SAS subluxations in RA includes all applicable measures in the suppression of active synovitis, the ultimate cause of subluxations. At admission the two patients had no active synovitis of the peripheral joints. Synovitis in the cervical spine may have been reduced by rest because of immobilisation with the HALO vest. Patients with cervical subluxation but without objective or deteriorating neurological signs can be treated with a soft collar, which provides symptomatic relief and may provide some degree of protection from trauma. There are no controlled trials of prophylactic surgery of the cervical spine in RA patients. The radiological progression of cervical spine subluxation in RA patients is unpredictable and there is poor correlation between an increasing AAS or SAS and the development of neurological signs.

In patients with cervical myelopathy, the recommended procedure is cervical traction and surgical stabilisation. In our patients the decision was taken to treat them accordingly. After four months of cervical traction and external fixation with a Halo vest improvement of the neurological deficit, reduction of the SAS, and firm stabilisation of the cervical spine were obtained. Therefore surgical stabilisation was not necessary for these frail patients. The only partial improvement of neural function may be attributable to irreversible spinal cord injury as a result of mechanical or vascular damage.

The results of surgical treatment in non-ambulant myelopathic patients are dismal. Casey et al reported that only a quarter of these patients achieved a satisfactory outcome and a quarter died within six months. McRorie et al reported better results of surgical stabilisation in patients with less neurological deficit. They did not mention differences in patients with AAS, SAS or a combination of these. Peppel-
vest allows the patient to continue to be active. Marks et al and Meijers et al reported some patients with cervical myelopathy treated only by continuous cervical traction. The reasons for this treatment were unfavourable initial response on cervical traction, refusal of a surgical procedure, or a bad physical condition. All these patients died within one year, mostly because of complications of cord compression. They did not mention differences in patients with AAS or SAS. Kornblum et al described three patients, in two of whom the subluxation was reduced with cervical traction and held with external support. One of these two suffered from severe progressive SAS. In our patients treatment with temporary cervical traction and external fixation resulted in sustained improvement of neurological deficit. The definite stabilisation of the cervical spine may be merely achieved by the external fixation in the Halo vest.

In RA patients with cervical myelopathy caused by cervical subluxations cervical traction followed by a surgical procedure is still the recommended intervention. It is remarkable in these cases that prolonged cervical traction and external fixation with a Halo vest resulted in a firm stabilisation of the cervical spine. Cervical traction and immobilisation with a Halo vest can be considered as an independent, conservative treatment for SAS, in particular in patients with a high operation risk. This procedure without surgical stabilisation is probably not suitable for treatment of AAS. The anatomy and mechanical forces operating at C1–C2 level are different from those at the lower levels of the cervical spine.

Figure 4 Lateral plain radiography (A) and T2 weighted sagittal MR image (B) of the cervical spine showing reduction and stabilisation of C3–C4 subluxation (3 mm), reduction of compression of the spinal cord, and no changes at C4-C5 level.

References