Two forms of reactive arthritis?

Paavo Toivanen, Auli Toivanen

Abstract
Inflammatory arthritides developing after a distant infection have so far been called reactive or postinfectious, quite often depending on the microbial trigger and/or HLA-B27 status of the patient. For clarity, it is proposed that they all should be called reactive arthritis, which, according to the trigger, occurs as an HLA-B27 associated or non-associated form. In addition to the causative agents and HLA-B27, these two categories are also distinguished by other characteristics. Most important, HLA-B27 associated arthritis may occur identical to the Reiter’s syndrome with accompanying urethritis and/or conjunctivitis, whereas in the B27 non-associated form this has not been clearly described. Likewise, only the B27 associated form belongs to the group of spondyloarthropathies.

(Ann Rheum Dis 1999;58:737–741)

Reactive arthritis was originally defined as a synovitis developing after a distant infection, and it was distinguished from postinfectious arthritis by absence of bacterial components in the joint tissue. The main effort of research in this field has been focused on the arthritides triggered by Chlamydia, Yersinia, Salmonella, Shigella, or Campylobacter, usually in HLA-B27 positive persons. However, several other infections may induce a similar reactive arthritis. These patients have only remained scattered, and a clear association of their disease to B27 is missing. Therefore, according to the triggering agent, the arthritides fulfilling the original definition of reactive arthritis could be considered to occur in two forms, one HLA-B27 associated and another HLA-B27 non-associated. Such a categorisation has already previously been considered, but certain confusion still prevails.

Aetiology
The majority, in some studies up to 90%, of the patients contracting reactive arthritis after an infection with Chlamydia, Salmonella, Shigella or Yersinia are HLA-B27 positive. The same applies to reactive arthritis following diarrhoea attributable to Campylobacter jejuni or to overgrowth of Clostridium difficile. Of the 19 B27 typed patients reported so far with reactive arthritis after Clostridium difficile associated diarrhoea 12 (63%) were B27 positive.

must be emphasised that it is not known whether the arthritis is attributable directly to Clostridium difficile or to changes of the intestinal flora; bacterial structures have not been demonstrated in the synovial tissue as is the case in arthritis triggered by Chlamydia, Salmonella, Shigella or Yersinia. It should also be noted that both the capacity for arthritis induction as well as B27 association may greatly vary even within a single bacterial species. Good examples are Yersinia and Salmonella. In Salmonella outbreaks, a B27 frequency as low as 27% among the arthritis patients has been reported, which, however, is considerably more than in the general population.

Among the pathogens in the genus Campylobacter, Campylobacter jejuni, fetus and lari are known to cause reactive arthritis. Chlamydia trachomatis is a common cause of reactive arthritis, and cases attributable to Chlamydia pneumoniae and Chlamydia psittaci have also been reported. Among Clostridia, Clostridium difficile is the only one associated with reactive arthritis. Regarding salmonellas, no evidence exists to indicate that any of the species or serotypes that are human pathogens would be unable to induce reactive arthritis. Shigella flexneri has been thought to be the only one out of the four Shigella species capable of triggering reactive arthritis, but on the basis of two reports it seems that also the less virulent Shigella sonnet has this capacity. Within the genera of Yersinia, both Y enterocolitica and Y pseudotuberculosis are causes of reactive arthritis, with arthritogenicity varying between and within different serotypes. A common nominator to all bacterial species discussed above is their capacity to trigger reactive arthritis predominantly in HLA-B27 positive persons.

Table 1 Bacterial genera with species triggering reactive arthritis

<table>
<thead>
<tr>
<th>Bacterial genera</th>
<th>Species triggering reactive arthritis</th>
</tr>
</thead>
<tbody>
<tr>
<td>Campylobacter</td>
<td>Borrelia</td>
</tr>
<tr>
<td>Chlamydia</td>
<td>Brucella</td>
</tr>
<tr>
<td>Clostridium</td>
<td>Haemophilus</td>
</tr>
<tr>
<td>Salmonella</td>
<td>Hafnia</td>
</tr>
<tr>
<td>Shigella</td>
<td>Leptopropia</td>
</tr>
<tr>
<td>Yersinia</td>
<td>Mycobacterium</td>
</tr>
<tr>
<td></td>
<td>Neisseria</td>
</tr>
<tr>
<td></td>
<td>Staphylococcus</td>
</tr>
<tr>
<td></td>
<td>Streptococcus</td>
</tr>
<tr>
<td></td>
<td>Ureaplasma</td>
</tr>
<tr>
<td></td>
<td>Vibrio</td>
</tr>
</tbody>
</table>
Bacteria that have been reported to cause reactive arthritis in an HLA-B27 independent fashion are listed in table 1. Among these, the infections caused by Borrelia burgdorferi represent a special entity because of the highly variable nature of Lyme disease.77–80 From the members of the other bacterial genera in table 1, Brucella abortus, Haemophilus influenzae, Haemophilus alvei, Leptospira, Mycobacteria, Neisseria gonorrhoeae, Neisseria meningitidis, Staphylococcus aureus, Streptococcus, Ureaplasma urealyticum and Vibrio parahaemolyticus have been reported to trigger a disease fulfilling the original definition of reactive arthritis.81–85 For none of these has an association to HLA-B27 been observed. Likewise, several viral, fungal and parasitic infections are known to induce reactive arthritis without any clear association to HLA-B27.80–84 The same applies to reactive arthritis accompanying inflammatory bowel diseases, intestinal bypass, acne, cystic fibrosis, etc.85–89 A feature shared by bacteria triggering B27 non-associated reactive arthritis is their capacity to cause bacterial (septic) arthritis. In fact, the clinical and laboratory diagnosis between reactive and bacterial arthritis is often extremely difficult or even impossible,82 84–86 (table 2), and knowledge of the bacteriological aetiology is of great help,85 and Jalava et al (unpublished data).

Reactive or postinfectious?
A question remains whether an HLA-B27 non-associated arthritis after a known or unidentified infection elsewhere in the body should be called postinfectious or reactive. More than 20 years ago postinfectious arthritis was defined as an inflammatory arthritis with non-culturable bacterial components present in the synovial tissue and reactive arthritis was regarded purely reactive, without any bacterial structures present at the site of synovial inflammation.1 2 Today it is known that non-viable bacterial structures are present in the synovial tissue of patients with B27 associated reactive arthritis14–21 65 as well as in other types of inflammatory arthritis.66–67 Likewise, bacterial DNA occurs in the synovial cells in postinfectious arthritis attributable to Borrelia burgdorferi,68 Chlamydia trachomatis,69–72 Chlamydia pneumoniae73 or Neisseria gonorrhoeae,74–77 with bacterial cultures being negative. In other words, it has become impossible to distinguish postinfectious and reactive arthritis by these criteria. You are left only with the definition of a sterile arthritis after a distant infection; this may or may not include demonstration of non-culturable bacterial components at the site of infection.

You could argue that the definition of reactive arthritis should be restricted to the most typical causes—that is, to Campylobacter, Chlamydia, Clostridium difficile, Salmonella, Shigella and Yersinia, for which the HLA-B27 association is known, and all others should be called postinfectious. However, the actual aetiology of a clinically typical reactive arthritis may remain unknown. Therefore, restriction of the term reactive arthritis only to these bacterial triggers seems not justified. It could be logical to divide reactive arthritis into two forms, one HLA-B27 associated and another HLA-B27 non-associated. You should note that association or non-association to HLA-B27 is not 100%, and that so called B27 associated bacterial species may induce even chronic reactive arthritis in B27 negative subjects, indicating that presence of HLA-B27 is not a prerequisite for chronicity.97 However, B27 most probably represents a risk factor for severity.98

In addition to causative agents and HLA-B27, these two categories are distinguished by other characteristics (table 3). Most important, B27 associated arthritis may occur identical to the Reiter’s syndrome with urethritis and/or conjunctivitis. In the B27 non-associated form

Table 2 Laboratory characteristics in reactive and bacterial arthritis

<table>
<thead>
<tr>
<th>Characteristics</th>
<th>Reactive arthritis</th>
<th>Bacterial arthritis</th>
</tr>
</thead>
<tbody>
<tr>
<td>ESR mm 1st h (median)</td>
<td>79</td>
<td>78</td>
</tr>
<tr>
<td>CRP g/l (median)</td>
<td>129</td>
<td>125</td>
</tr>
<tr>
<td>Peripheral blood</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Leucocytes ×10^9/l</td>
<td>9.9</td>
<td>11.6</td>
</tr>
<tr>
<td>Synovial fluid (knee)</td>
<td>19.0</td>
<td>36.0</td>
</tr>
<tr>
<td>Granulocytes % of leucocytes (median)</td>
<td>85</td>
<td>89</td>
</tr>
</tbody>
</table>

These findings are based on a study of 20 patients with B27 associated reactive arthritis and of 20 patients with culture positive bacterial arthritis.61 Reactive arthritis was caused by Yersinia (14 patients), Salmonella (4) or Chlamydia (2).

Table 3 Characteristics of the two forms of reactive arthritis

<table>
<thead>
<tr>
<th>Characteristics</th>
<th>HLA-B27 associated*</th>
<th>HLA-B27 non-associated†</th>
</tr>
</thead>
<tbody>
<tr>
<td>Triggers</td>
<td>Campylobacter, Chlamydia, Clostridium difficile, Salmonella, Shigella, Yersinia</td>
<td>A variety of other microbes</td>
</tr>
<tr>
<td>Cultivable microbes present in joint</td>
<td>No</td>
<td>No</td>
</tr>
<tr>
<td>Microbial structures demonstrated in joint</td>
<td>Yes</td>
<td>So far only rarely</td>
</tr>
<tr>
<td>Differential diagnosis to bacterial arthritis</td>
<td>Mostly clear</td>
<td>Often unclear</td>
</tr>
<tr>
<td>Oligo-or polyarthritis</td>
<td>Usually oligoarthritis, most commonly in knee</td>
<td>Polyrthritis more common than in the B27 associated form; other joints than knee affected as well</td>
</tr>
<tr>
<td>Reiter’s syndrome</td>
<td>Occurs</td>
<td>Not usual, but found after genitourinary infections§</td>
</tr>
<tr>
<td>Tendency for chronicity</td>
<td>Yes</td>
<td>Not clear</td>
</tr>
<tr>
<td>Evolution to ankylosing spondylitis</td>
<td>Possible</td>
<td>Not observed</td>
</tr>
<tr>
<td>Part of spondyloarthropathy group</td>
<td>Yes</td>
<td>No</td>
</tr>
<tr>
<td>Pathogenetic mechanisms</td>
<td>Similar to experimental antigen induced arthritis; in addition, an HLA-B27 associated mechanism</td>
<td>Similar to experimental antigen induced arthritis</td>
</tr>
</tbody>
</table>

*Sixty to ninety per cent of patients with this form of reactive arthritis are HLA-B27 positive.
†In patients with this form, HLA-B27 occurs in the same frequency as in the normal population.
§It is unclear if reactive arthritis developing after Ureaplasma and gonococcal infections is accompanied by other signs of Reiter’s syndrome predominantly in HLA-B27 positive patients.
Reactive arthritis

Figure 1 Pathogenesis of reactive arthritis, compared with that of experimental antigen induced arthritis. In the reactive arthritis, bacterial antigens end up in the joint tissue as a result of the infection. In the experimentally induced arthritis, the antigen (for example, BSA or non-viable bacterial antigen) is first given parenterally and two weeks later intra-articularly. In addition to the pathogenetic mechanism depicted here, an HLA-B27 dependent, so far unknown mechanism operates in the B27 associated form of reactive arthritis.

of reactive arthritis this has not been clearly described; it is unclear if reactive arthritis developing after Ureaplasma and gonococcal infections is accompanied by other signs of Reiter’s syndrome predominantly in HLA-B27 positive patients.47

Pathogenesis

Are living bacteria always required for induction of reactive arthritis? The answer seems to be no, because the disease has been reported after vaccination with killed Salmonella bacteria79 or with recombinant hepatitis B viral protein.75 In fact, human reactive arthritis greatly resembles experimental antigen induced arthritis, where an animal is first parenterally immunised and thereafter challenged intracellulary with the same antigen (fig 1).76–81 Arthritis then develops as a T cell mediated reaction at the site of the challenge, with an immune complex mediated mechanism potentially also contributing. In the human reactive arthritis, the patient has a preceding infection during which they become naturally immunised against the aetiological agent. You must assume that during that process—that is, usually in one to three weeks—microbial antigens are transported to the synovial tissue. This may occur intracellularly within mononuclear or other phagocytes or even in the form of free antigen or proliferative bacterial bodies.86–70 The consequence is a CD4+ cell mediated reaction, manifested as acute arthritis; immune complex mediated cytotoxicity may also participate.82–85 Similarly to experimental antigen induced arthritis. For development of a chronic antigen induced arthritis, a periodic or continuous supply of the sensitised CD4+ cells in joint

Experimental arthritis

Intra-articular injection of antigen

Sensitised CD4+ cells in joint

Systemic immunisation

Bacterial antigens in joint

Spread of bacterial antigens

Infection

Subcutaneous injection of antigen

Systemic immunisation

Sensitised CD4+ cells in joint

Reactive arthritis

Töivanen, Töivanen

90 Hermann E. T cells in reactive arthritis. APMIS 1993;101:177-86.